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Abstract

Motivation: Gradual population-level changes in tissues can be driven by stochastic plasticity, meaning rare
stochastic transitions of single-cell phenotype. Quantifying the rates of these stochastic transitions requires time-
intensive experiments, and analysis is generally confounded by simultaneous bidirectional transitions and asym-
metric proliferation kinetics. To quantify cellular plasticity, we developed TRANSCOMPP (Transition Rate ANalysis of
Single Cells to Observe and Measure Phenotypic Plasticity), a Markov modeling algorithm that uses optimization
and resampling to compute best-fit rates and statistical intervals for stochastic cell-state transitions.

Results: We applied TRANSCOMPP to time-series datasets in which purified subpopulations of stem-like or non-stem
cancer cells were exposed to various cell culture environments, and allowed to re-equilibrate spontaneously over
time. Results revealed that commonly used cell culture reagents hydrocortisone and cholera toxin shifted the cell
population equilibrium toward stem-like or non-stem states, respectively, in the basal-like breast cancer cell line
MCF10CA1a. In addition, applying TRANSCOMPP to patient-derived cells showed that transition rates computed from
short-term experiments could predict long-term trajectories and equilibrium convergence of the cultured cell
population.

Availability and implementation: Freely available for download at http://github.com/nsuhasj/Transcompp.

Contact: Lisa.Tucker-kellogg@duke-nus.edu.sg or bchmvc@nus.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Stochastic transitions allow cells of the same genotype to spontan-
eously switch between different phenotypic states in response to in-
ternal or external cues (Reyes and Lahav, 2018). The molecular
mechanisms of stochasticity are often unknown but may include ex-
pression differences, epigenetic regulation or macromolecular
changes. Stochastic transitions underlie temporal changes in many
biological contexts including tissue regeneration, embryonic devel-
opment, gene regulatory networks, epigenetic transformations
(Armond et al., 2014; Flöttmann et al., 2012) and cancer plasticity
(Dingli and Pacheco, 2011; Hoek and Goding, 2010).

In cancer, multiple studies have documented stochastic re-
equilibration, a phenomenon where one phenotype purified from a
heterogeneous population (such as stem-like or differentiated cells)
can spontaneously give rise to a heterogeneous population resem-
bling the original (Gupta et al., 2011; Leong et al., 2014). Such stud-
ies warn of the ability of tumors to recapitulate their cellular
composition post-treatment and suggest a basis for the development
of drug resistance in tumors (Chisholm et al., 2016; Emmons et al.,
2016; Kemper et al., 2014; Pisco and Huang, 2015). While transi-
tions from stem cells to differentiated cells are unsurprising, such
studies also showed that in many cancer types, some degree of de-
differentiation (differentiated-to-stem transitions) may be occurring
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spontaneously (Chaffer et al., 2011), albeit infrequently. Even very
infrequent transitions can have a significant impact on a system
when they replenish an influential or proliferative subpopulation.
Hence, to understand the inherent plasticity of any system, it is im-
portant to perform precise and sensitive quantification of stochastic
state transition rates, even when the underlying transition rates are
small.

Experimental quantification of stochastic state-transition rates is
difficult for multiple reasons. Time-series experiments measure only
snapshots of phenotypic abundance, and not transition rates. The
analysis of such time-series experiments is further confounded by
variables such as different proliferation rates for each phenotype
(Supplementary Material S1). Also difficult is the deconvolution of
observed bulk changes to obtain individual contributions of stochas-
tic transitions in each direction. Computational modeling is ideally
suited to handle such issues (Beerenwinkel et al., 2015), and with
sufficient experimental data, can estimate interdependent parame-
ters simultaneously. The resulting transition rates then reveal the
relative contributions of individual transitions to overall dynamics.
The transition rates can also be used to simulate and predict long-
term dynamics from short-term observations, with or without
perturbations (e.g. phenotype depletion/enrichment, transition sup-
pression/amplification). Since Markov state-transition models are
particularly well suited to the analysis of stochastic transitions and
the concept of re-equilibration (stationary distributions), we will use
Markov modeling to estimate the transition rates in this study.

Previous work has successfully used Markov state-transition
models (Fig. 1A) to compute transition rates between cell pheno-
types in specific contexts (Buder et al., 2017; Gupta et al., 2011).
However, their methods were specific to particular applications,
without being generalizable to different contexts and experimental
designs. For example, CellTrans (Buder et al., 2017) has some prac-
tical limitations, such as inability to model variable proliferation
rates, and requiring an invertible input matrix (meaning that it
requires the number of replicates to be exactly equal to the number
of phenotypes). Hence, there is an unmet need to develop a general-
purpose tool to compute transition rate parameters from time-series
measurements of single-cell phenotypes. The requirements of the
proposed tool are as follows: to estimate transition rates that best
agree with the collected time-series phenotypic snapshots (across
any number of replicates), to measure uncertainty (noise) of the
computed rates, to account for confounding factors, such as
phenotype-specific differences in proliferation rates, and to analyze
datasets with flexible configurations of the initial population
compositions.

We have developed TRANSCOMPP (Transition Rate ANalysis of
Single Cells to Observe and Measure Phenotypic Plasticity), a novel
computational tool to quantify transition rates and associated rate
distributions, using data from time-series single-cell experiments.
Experiments studying single-cell characteristics (flow cytometry,
scRNA-seq, lineage tracing, etc.) can be used to obtain fractional
compositions (fraction of total population) of different phenotypic
states at multiple time-points. TRANSCOMPP uses these fractional com-
positions to estimate transition rates that best fit the observed data,
with or without user-imposed constraints on transition rates.
Proliferation rates of each phenotype can be known or partially
bounded by experiments (for use as input), or completely unknown
(simultaneously fit with transition rates). A resampling module
(using the single-cell phenotype measurements) then quantifies the
uncertainty interval associated with each computed rate of transi-
tion. Compared to previously published methods, such as CellTrans
(Buder et al., 2017), TRANSCOMPP fulfills the requirements above
while providing robust performance and increased accuracy with
increasing problem complexity (Supplementary Materials S2 and
S3).

We applied TRANSCOMPP to the basal-like breast cancer cell line
MCF10CA1a, to assess the effect of different cell culture media sup-
plements on the plasticity between stem-like and non-stem cancer
cells (Santner et al., 2001). Previous studies have identified cancer
stem cells by virtue of the expression of the cell surface marker pro-
file CD44high CD24low (Al-Hajj et al., 2003; Bhat-Nakshatri et al.,

2010; Nakshatri et al., 2009). Hence, we studied the dynamics of
CD24 expression in the CD44pos MCF10CA1a cell line in vitro, by

growing cells in either minimal basal medium (BM), or when supple-
mented with a cocktail of factors [insulin (INS), epidermal growth

factor (EGF), hydrocortisone (HC), cholera toxin (CTX)] taken in-
dividually, or all together (complete medium, CM). Using the
TRANSCOMPP-computed transition rates (and intervals), we identified

novel regulators of plasticity (HC and CTX), whose effects were
found to be greater than known modulators of plasticity, such as

INS. HC (an analog of the stress hormone cortisol) enriched the
CD24neg fraction and hence promoted pro-stem behavior. In con-
trast, CTX (an agonist of the PKA pathway) enriched the non-stem

fraction (CD24pos).
Because studies of gradual plasticity might require costly long-

term observations, our final question was whether realistic experi-
mental noise (from clinical samples) combined with TRANSCOMPP

quantification would suffice to allow long-term plasticity to be

studied using short-term experiments. Applying TRANSCOMPP to a
previously published patient dataset (Leong et al., 2014) revealed

that the long-term population convergence and equilibrium between
ALDEFLUORhi (stem-like) and ALDEFLUORlo (non-stem) tumor
cell subpopulations could be accurately predicted using short-term

observations.

2 Materials and methods

2.1 The TRANSCOMPP algorithm
Denote the set of K distinct phenotypic cell states by the set S ¼ fS1,
S2 . . . Skg. The transition rates can be represented as a K � K transi-

tion matrix T such that the element T(a, b) of the transition matrix
(1� a, b�K) gives the probability that a cell in state Sa would tran-

sition to state Sb in unit time. Let the fractional compositions (rela-
tive abundance of each phenotype in the population) be given by the
K-vector F¼ (f1, f2. . .fK) such that

PK
i¼1 fi ¼ 1. Single-cell measure-

ments of phenotypic states (such as flow cytometry) are performed
at N time-points t0, t1 . . . tN�1, where time-point t0 is the initial
population. If the time-series experimental measures were generated

Fig. 1. Markov modeling framework for computing stochastic transition rates. (A)

A sample Markov model showing two phenotypic states, A (red) and B (blue), with

arrows showing transitions between the states. Arrow labels indicate the transition

probabilities (rates) which we will compute using our method. Also shown is a rep-

resentation of the model as a transition matrix, whose elements are the four transi-

tion rates. (B) The TRANSCOMPP flowchart for computing T, the best-fit transition

matrix, using optimization based on multiple experimental replicates. r, replicates;

n, experimental time-points monitored; P0, initial populations; Prolif, proliferation

matrix (see Section 2). aThe choice of error metric affects the minimization. Shown

is sum-of-squared residuals error metric. For other error metrics, see Supplementary

Material S4
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by an underlying Markov process with transition rates T, then in
theory (in the absence of noise),

Fj ¼ F0 � Tj (1)

where, F0 and Fj are the fractional compositions of the K states after
0 (initial) or j time intervals of arbitrary unit time x, respectively.
The time-step x (hereafter called the iteration interval) for the tran-
sition rate units (e.g. day�1) is chosen such that all experimental
measurements are performed after integer numbers of x. There is no
requirement that the measurements be made at equal intervals of
time. For any experimental time-point tn, the number of elapsed iter-
ation intervals until that measurement is then given by tn� t0ð Þ�

x.
A simple trajectory refers to a single replicate of a time-series

study. At any given time-point tn, the population snapshot Pn repre-
sents the measured fractional compositions of all states across each
of R simple trajectories, and is given by Pn ¼ [F1(n), F2(n) . . .FR

(n)]’. The population trajectory can then be defined as a series of
population snapshots from all measured time-points t0, t1. . . tN�1,
given by (P0, P1. . . PN�1).

For a given transition matrix T and initial population conditions,
Markov modeling can be used to predict the estimated population
snapshot at any time-point tn, (n>0) using Equation (1) as,

Ppred
n ¼ P0 � T tn� t0ð Þ=x (2)

where P0 is the population snapshot at time t0. When the population
dynamics are also affected by phenotype-specific proliferation rates,
we convert the population fractions into population abundance and
apply a discrete proliferation process at each time-step. The prolifer-
ation process is encoded by a size-K diagonal matrix called the
Prolif matrix, whose elements are a function of the relative prolifer-
ation rate pk of each phenotype. For each phenotypic state k, pk rep-
resents the rate of division of cells in state k, relative to the rate of
division in an arbitrarily chosen reference phenotype P1. For a
phenotype that on average doubles twice as fast as the reference
phenotype, pk ¼ 2. The elements of the Prolif matrix represent the
factor of increase in the abundance of each phenotype, in one rela-
tive iteration interval (s), and are given by Prolif (k, k) ¼ 2pks. s is
computed as the arbitrary time-unit x (iteration interval in real
time, e.g. 1 day) divided by the average doubling time of P1 (in real
time). The reference phenotype, generally the first phenotype P1,
has p1 ¼ 1, and hence, Prolif (1,1) ¼ 2s. The predicted cellular abun-
dance (measure of number of cells of each phenotype) at any time-
point tn is, therefore,

Apred
n ¼ A0� Prolif�T½ � tn� t0ð Þ=x (3)

where A0 is the cellular abundance of each state initially and Apred
n is

the predicted cellular abundance of each state at tn. The fractional
compositions of the states at each time-point can then be obtained
by normalizing the cellular abundances of all phenotypes such that
they sum to 1.

TRANSCOMPP optimizes the transition matrix T and, optionally,
the proliferation rate matrix Prolif, in order to minimize the cumula-
tive error-of-fit between observed and predicted population snap-
shots across all measured time-points and replicates (Fig. 1B). The
error-of-fit is dependent on the type of error measure. Shown in
Equation (4) is the optimization performed using SSR (sum of
squared residuals) as the measure. See Supplementary Material S4
for two other measures: least trimmed squares and L1 norm.

argmin
T; Prolif

XN�1

n¼1

P0� Prolif�T½ � tn�t0ð Þ=x � Pobs
n

� �2

(4)

Note that by definition, population snapshots include data from
R simple trajectories (replicates) and hence the overall minimization
is performed over all replicates and time-points. TRANSCOMPP imple-
ments the minimization using the optimization toolbox of MATLAB
(Mathworks). The above minimization is repeated from a random
initial seed until convergence, for a user-specified number of times
(default ¼ 50). The optimization can include upper- and lower-

bound constraints to ensure that the transition rates favor specific
directions (e.g. self-transitions) and that the proliferation rates for
phenotypes are within a range of fold-changes from each other.

2.2 Stochastic resampling
To compute uncertainty measures for the best-fit transition rates, we
obtain a probability distribution for each transition rate, by repeat-
edly generating pseudo population trajectories (pPT) from the ori-
ginal data, and computing the best-fit transition rates for each
pseudo-trajectory. Each pPT is equivalent to a single hypothetical
simple trajectory (replicate) composed of pseudo population snap-
shots (pPS) (P0, P1. . . PN�1) derived from the original data. When
the input data includes single-cell measures that allow phenotype
classification (flow cytometry, scRNA-seq, etc.), the pPS for each
time-point tn is calculated as follows:

Pick a predetermined number l (default ¼ 100) of single-cell
measurements across all R replicates, with each replicate assigned
an equal probability of being chosen. Using these measurements, bin
the chosen l cells into one of the K phenotypic states through user-
defined thresholds or clustering algorithms. Then compute Fpseudo

n ,
the fraction of l cells in each phenotypic state.

When the input data do not contain single-cell measures of state
but only fractional compositions, the pPS is computed using techni-
ques explained in Supplementary Material S5. The choice of l (the
sampling breadth) affects how the sampled pPS will be distributed
around the mean experimental population snapshots. Higher values
of l result in greater convergence toward the mean experimental dis-
tribution (Supplementary Material S6).

To compute the best fit transition matrix T for each pPT, we
perform the minimization from Equation (4). If the experiments
were originally performed starting with k enriched or purified states,
then the pPT will also be constructed with enrichment of the same
states, and contain k rows of Fpseudo

n . Each row of this pPT corre-
sponds to a simple trajectory of hypothetical enrichment of a differ-
ent phenotypic state. This ensures that the computed T for any one
pPT is not biased by unbalanced initial configurations. We repeat
the generation of pPT (and solving for T) B times (default
B¼1000), to obtain a frequency distribution for each transition
rate.

2.3 Analytical flow cytometry
MCF10CA1a cells at 70–80% confluency were harvested with
StemProVR AccutaseVR Cell Dissociation Reagent (Life Technologies).
Collected cells were re-suspended in wash buffer (serum-free
DMEM/F12 w/o phenol red, 0.5% Bovine Serum Albumin, 2 mM
Ethylenediaminetetraacetic acid) and stained with fluorophore-
conjugated antibodies for CD24 (BD Biosciences, San Jose, CA,
USA) for 30 min at 4�C in the dark. For each sample, fluorescence
intensity (>10 000 cells) was detected with a BD LSRFortressaTM
cell analyzer (BD Biosciences). Intensity thresholds for CD24neg/pos

were established at the 99th percentile of unstained cells.

2.4 Further experimental and statistical methods
See Supplementary Material S7 for further experimental and statis-
tical methods.

3 Results

3.1 Development of the TRANSCOMPP algorithm
We developed TRANSCOMPP for computing best-fit transition rates for
Markov models. The TRANSCOMPP algorithm uses a discrete-time
Markov model to capture state-change dynamics of cell phenotypes.
A Markov model consists of a set of discrete states (phenotypic
states) each of which can transition to other states at a fixed prob-
ability per time-step (transition rate) (Fig. 1A). Input to TRANSCOMPP

is a time-series dataset of single-cell measures of cell phenotype (e.g.
biomarker expression), or bulk statistics showing the relative abun-
dance of each phenotype in the cell population (fractional composi-
tions). TRANSCOMPP minimizes an objective function (a measure of

TRANSCOMPP 2815
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distance between modeled and observed populations) to solve for
transition rates that are the minimum-error fit across all replicates
and time-points (Fig. 1B). In addition to computing transition rates,
TRANSCOMPP can also account for phenotype-specific proliferation
parameters (when they are known or solve for them when they are
unknown) and compute uncertainty estimates for the computed
transition rates.

3.2 Benchmarking the performance of TRANSCOMPP

To assess the accuracy of using a simple proliferation matrix at dis-
crete time-steps to approximate continuous proliferation dynamics
under phenotype-specific rates, we developed an agent-based simu-
lation of stochastic single-cell proliferation and phenotypic transi-
tion with fine-grained temporal events (Supplementary Material S2).
Figure 2A shows the agreement (error-of-fit) between the fractional
composition trajectories of a two-state system, generated by the
agent-based simulation versus that generated by using a discrete pro-
liferation matrix (Equation 3). The proliferation rate of the pheno-
type P1 is kept constant at 1.0 (reference phenotype), while the
relative proliferation rate of the phenotype P2 is varied in the range
0.1 to 10 (10� slower to 10� faster). The relative iteration interval
was varied from 0.1 to 2, indicating that pseudo-measurements
would be made periodically at time-points ranging from one-tenth
to twice the doubling time of P1. From 2A, it can be seen that using
the discrete proliferation rate provides a close approximation of a
continuous proliferation process, in the range of variability expected
to be observed physiologically in proliferation rates (0.5� � 2� of
any phenotype).

Using similar agent-based simulations, we generated pseudo-
experimental data for different conditions (systems with 2–12 phe-
notypes, random transition matrices, similar/random variable prolif-
eration rates, purified/unsorted initial conditions, 1–16 time-points
of measurement and 1–20 replicates). TRANSCOMPP was then applied
to these datasets and benchmarked as follows.

To benchmark runtimes, we applied TRANSCOMPP to datasets of
unsorted initial populations of phenotypes with variable prolifer-
ation rates (solving for both transition and proliferation rates).
Figure 2B shows the runtime of TRANSCOMPP when run in parallel
(one dataset per core) on an Intel(R) Xeon(R) CPU E5-2650 ma-
chine as a function of the number of phenotypes in the system (top)
and the number of replicates in the input data (bottom). Note that
each run of TRANSCOMPP to compute a transition matrix used 50
restarts of optimization, to avoid local minima. To benchmark per-
formance accuracy, we checked how well the best-fit transition rates
(output by TRANSCOMPP) would recapitulate the nominal transition
rates used originally to generate the pseudo-data by the agent-based
simulations. Figure 2C shows the agreement between the nominal
transition rates and predicted transition rates when TRANSCOMPP was
applied to the same datasets as in Figure 2B. On the left are plots of
systems with 2, 5, 8 or 11 phenotypes when approximate estimates
(6 25%) for the relative proliferation rates of all phenotypes (except
P1) are provided. On the right are similar plots corresponding to
TRANSCOMPP runs where no information is provided about prolifer-
ation rates, and hence TRANSCOMPP simultaneously solves for best-fit
transition rates and proliferation rates. It can be seen that even in
the latter case, the TRANSCOMPP-estimated rates show good agree-
ment with the nominal rates (lowest correlation ¼ 0.951, for Phe ¼
11).

To quantify the impact of the amount of input data on transition
rate estimation, we applied TRANSCOMPP to the same datasets as in
Figure 2B (solving for both transition and proliferation rates) while
increasing the number of replicates in the input data. Figure 2D
shows the distribution of the root-mean-squared deviations
(RMSDs) of transition rates (approximate measure of error in each
TRANSCOMPP-predicted rate of the transition matrix), as a function of
the number of replicates in the input data. Results showed that the
RMSD usually approaches its minimum value within 4–5 replicates.
Further benchmarking (scatter plots of all cases from Phe ¼ 2 to Phe
¼ 12, and RMSD values of transition rates accuracy of TRANSCOMPP

applied to other types of problems) can be found in Supplementary
Material S2.

3.3 Re-equilibration between stem-like CD24neg and

non-stem CD24pos cells in the basal-like breast cancer

cell line MCF10CA1a
CD24neg (stem-like) and CD24pos (non-stem) cells from the basal-
like breast cancer cell line MCF10CA1a were obtained by

Fig. 2. Benchmarking TRANSCOMPP runtime and accuracy. A spectrum of test problems

was created using an agent-based simulation with variable numbers of phenotypic

states, variable transition rates and proliferation rates, and variable amounts of data

provided as input to TRANSCOMPP. See Supplementary Material S2. TRANSCOMPP was

run on each test problem and the accuracy of the model trajectory, the accuracy of the

transition rates, the dependence on data availability, and the runtime were assessed.

(A) To assess the intrinsic error of simplifying a continuous proliferation process using

a discrete-time proliferation model, we computed the error-of-fit between the pheno-

type trajectories generated by a two-state simulation of continuous proliferation, ver-

sus the trajectories obtained using a discrete-time Markov model with the same

transition rates and the same average proliferation rate. The heat map shows different

combinations of relative iteration interval and proliferation rate (parameterized as p2,

the proliferation rate of the second phenotype, relative to 1.0 rate for the first pheno-

type), and the green box delineates a range of p2 that is most physiologically relevant

(0.5�p2 � 2). (B) Runtimes of TRANSCOMPP as a function of the number of phenotypes

in the system (top) and the number of replicates in the input data (bottom). Y axis in

log-scale. (C) Scatter plots showing the agreement between the nominal transition rates

used to generate pseudo-experimental data in the agent-based model, versus the best-

fit transition rates computed by TRANSCOMPP, for systems with 2, 5, 8 or 11 different

phenotypic states. The predicted rates are highly correlated with the original rates

when an approximate proliferation rate is known for each phenotype (left). When pro-

liferation rates are variable and not known (right), then the TRANSCOMPP-estimated

rates show slightly greater errors. (D) The RMSD (error-of-fit) between predicted and

nominal transition rates, as a function of the amount of data (number of replicates)

supplied as input to TRANSCOMPP. Even in a system with many states (Phe ¼ 11), the

RMSD is close to minimum with 4–5 replicates
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fluorescence-assisted cell sorting (FACS) (Fig. 3A–C) and cultured
for 32 days (n¼4 replicates) in BM.

To verify the existence of a dynamic equilibrium between the
CD24neg and CD24pos phenotypic states, single-cell measurements
of CD24 intensity were performed for all replicates of each sorted
population, on days 4, 8, 12, 19, 25 and 32 post-sorting. Data
showed that, regardless whether the population had been originally
enriched for CD24neg or CD24pos cells, the BM-treated populations
converged within 12 days to the same fractional composition of
�20% CD24neg and �80% CD24pos cells, and this ratio remained
stable over the 32-day monitored period (Fig. 3D).

3.4 TRANSCOMPP-computed transition rates reveal that

external environment cues affect the stemness

equilibrium in MCF10CA1a
A supplemented form of BM, called CM is also widely used to main-
tain the MCF10A series of cell lines in vitro. We noticed that
MCF10CA1a cells grown in CM exhibited morphological differen-
ces in comparison to those grown in BM (Fig. 4A), after three pas-
sages (around 2 weeks). Cells grown in BM formed compact
epithelial colonies, whereas cells grown in CM appeared as looser
colonies with scattered cells. Interestingly, the observed morpholo-
gies were found to be reversible on changing the medium from CM
to BM or vice versa.

This reversibility demonstrates that interconversion between the
epithelial-like and scattered morphologies could be triggered by BM
and CM as environmental cues. Hence, to assess if the same environ-
mental cues could affect equilibrium dynamics of MCF10CA1a, we
cultured sorted-CD24neg and CD24pos cells in either BM or CM for
12 days (flow cytometry every 4 days) (Fig. 4B). TRANSCOMPP was
used to compute best-fit transition rates. Computed transition rates
indicated that compared to BM, CM induced a 2-fold increase in the
rate of transition of the non-stem CD24pos cells to the stem-like
CD24neg cells, with minimal effect on the CD24neg to CD24pos cell
transition rate (Fig. 4C and D).

To determine the respective contributions of the individual sup-
plements to the CM-induced plasticity, we sorted CD24neg and
CD24pos cells and cultured them for 12 days in BM, supplemented
individually with each CM component (HC/INS/EGF/CTX). For
each treatment, we performed flow cytometry every 4 days
(Supplementary Material S8) and computed transition rates using

TRANSCOMPP (Fig. 5). The estimated transition rates were also used
to simulate population dynamics, starting from purified states at
time t0 as per Equation (2) (see Materials and Methods). The fit of

the simulated populations to the experimental observations, and the
predicted equilibrium compositions for each treatment can be seen

in Supplementary Material S9.
Interestingly, the computed transition rates suggested that expos-

ure to HC caused the most pro-CD24neg dynamic as shown by the
lowest CD24neg to CD24pos transition rates compared to BM, CM,
EGF, INS and CTX, while CTX treatment was found to show the

most pro-CD24pos dynamic with the lowest CD24pos to CD24neg

transition rate among all culture conditions. However, before con-

cluding that the underlying transition rates were truly different
across treatments, we had to assess if the observed differences be-
tween treatments were greater than the difference that might be seen

within replicates of the same treatment, and thus establish statistical
significance.

3.5 Resampling method and its application
We developed a resampling method to quantify uncertainty intervals
for the computed transition rates, and perform statistical compari-
sons between experiments. The resampling method works by ran-

domly subsampling the experimental measurements (input single-
cell or fractional composition data) to obtain a pseudo-data trajec-
tory (Fig. 6).

We used the resampling method to compute CD24 transition

rate distributions for each of the six media treatments used
(Table 1).

Transition rate distributions were computed using SSR error dur-
ing resampling.

Fig. 3. Re-equilibration between CD24neg (stem-like) and CD24pos (non-stem) phe-

notypes in the basal-like breast cancer cell line MCF10CA1a. (A) Schematic show-

ing enrichment of phenotypic states (red or blue) from a heterogeneous population

of cells, by sorting/enrichment through FACS, dilution, etc. For each enriched state,

single-cell measurements of phenotypic state (e.g. flow cytometry) are performed

periodically to monitor changes over time. (B) Flow cytometry of the untreated

MCF10CA1a population shows heterogeneity in the CD24 stemness marker (left).

Cells were sorted into stem-like CD24neg and non-stem CD24pos cells by FACS.

After sorting, the CD24 populations were validated by flow cytometry (right). (C)

RT-PCR of CD24 mRNA for CD24neg-sorted and CD24pos-sorted cells. (D) The

fraction of stem-like CD24neg cells over time, in populations that were originally

sorted into stem-like CD24neg (red) and non-stem CD24pos (blue). Flow cytometry

was performed on days 4, 8, 12, 19, 25 and 32 post-sorting. Regardless of initial en-

richment, the cellular population re-converged toward �15–20% CD24neg stem-

like fraction

Fig. 4. Phenotype and re-equilibration dynamics of the MCF10CA1a cell line is

affected by choice of growth medium. (A) Compared to MCF10CA1a cells grown

in BM, cells grown in complete medium (CM ¼ BM þ 20 ng/ml epidermal growth

factor, 10 lg/ml human insulin, 100 ng/ml cholera toxin and 0.5 lg/ml hydrocorti-

sone) showed scattered morphology after 90 days (same magnification. Scale bar ¼
500 lm). (B) Sorted CD24neg and CD24pos populations were cultured in either con-

trol BM or CM and for 12 days (n¼ 4 replicates). Flow cytometry was performed

on days 4, 8 and 12 post-sorting. Stacked rectangles denote the four replicates used

for each treatment (BM or CM). Within each rectangle, each square plot is a flow

cytometry dataset, with the shaded region indicating the histogram of CD24 inten-

sities, and the unshaded indicating the unstained control. (C) The computed best-fit

transition rates for 12-day BM cultures, computed using TRANSCOMPP. (D) The com-

puted best-fit transition rates for 12-day CM cultures
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Statistical comparisons across all conditions (Fig. 7A) indicated
that the transition rates induced by most supplements were signifi-
cantly different from the rates found in BM (Supplementary
Material S10). EGF and INS caused a significant increase in the rate
of CD24pos to CD24neg transition, without much effect on the
CD24neg to CD24pos transition. In contrast, HC acted bi-
directionally and exerted a stronger effect, by suppressing the transi-
tion from CD24neg to CD24pos while increasing the transition from

CD24pos to CD24neg. Finally, CTX caused opposite changes in tran-
sition rates, bi-directionally - increasing the rate of CD24neg to
CD24pos while decreasing the rate of CD24pos to CD24neg.

In summary, of all the tested supplements, HC and CTX caused
the greatest change in transition rates, compared with BM control
conditions. The computed transition rate distributions were also
used to simulate the expected range of CD24neg fractions (Fig. 7B
shaded regions) over 12 days for each treatment. In all cases, this
predicted range was found to align well with the observed CD24neg

dynamics. We also observed that trajectories simulated using the
combined effects (transition rates) of the four supplements (plus
BM) did not recapitulate either the experimental 12-day CM data,
or the simulated dynamics using the CM transition rates. This indi-
cates that the overall effect of the CM cocktail is different from the
sum of its parts (Supplementary Material S11).

3.6 TRANSCOMPP predicts long-term dynamics for head

and neck cancer patients using transition rates com-

puted from early time-points
In a clinical setting, re-equilibration was earlier demonstrated in
patient-derived cells from head and neck cancer (HNCC) (Leong
et al., 2014), where the authors noted that populations would revert
to an equilibrium with �5% stem-like (ALDHi) and �95% non-
stem (ALDLo) cells, starting from enriched populations of either
phenotype. Treatment with growth factors (Insulin þ EGF), shifted
the equilibrium toward the stem-like (ALDHi) phenotype, but no
transition rates were computed. TRANSCOMPP analysis (Fig. 8A) com-
puted transition rates confirming that non-stem cells had very low
plasticity (0.2% rate of state-change per passage) and stem-like cells
had much greater plasticity (6% rate of state-change per passage) in
two different patient samples. Model fit for the other HNCC data-
sets can be found in Supplementary Material S12.

To assess the predictive power of Markov modeling in this case,
we asked whether the rates computed using Markov assumptions on
short-term data could be extrapolated to predict future behavior of
patient-derived cells. Given that the HNCC experiments were per-
formed over 36 passages (>100 days), we retrospectively asked how
much monitoring would have been sufficient for TRANSCOMPP to pre-
dict long-term population dynamics and steady-state convergence in
the experimental data. We truncated the experimental dataset to the
first 3, 4, 5. . .12 time-points, and applied TRANSCOMPP to each data-
set. Figure 8C shows fits obtained from using only the early 3, 6 or 9
time-points.

Calculations revealed that for both patients included in the
study, four early time-points were sufficient to extrapolate a pre-
dicted trajectory of convergence that had an RMSD of 2.37% and
3.17% (ALDHi fraction) with the observed trajectory, for the two
patients, respectively. In comparison, the RMSD using rates com-
puted with the full 12 time-point dataset was found to be 2.11%
and 2.97% respectively (a sub-10% difference in RMSD) showing
how good a fit could be obtained from using four early time-points
only (Supplementary Material S13).

4 Discussion

We developed TRANSCOMPP, a tool to compute rates (and distribu-
tions) of stochastic transitions between phenotypic states.

Fig. 6. Schematic of the resampling method, to compute transition rate distribu-

tions. The resampling method is a technique to estimate the variability in the best-fit

transition rates. It involves iteratively creating B pseudo datasets from the experi-

mental data. Each pseudo dataset is created by picking l cell intensities at random

from all replicates (such that each replicate is given equal weightage), and then com-

puting the fraction of cells in each state. After repeating for each time-point, we ob-

tain a pseudo population trajectory, from which we compute the best-fit transition

matrix. Repeating this for the B pseudo population trajectories allows us to obtain a

distribution for each transition rate. Shown on the left are the individual steps

involved in resampling, and on the right are illustrative examples of the data types

utilized at each stage of the algorithm

Fig. 5. Computing transition rates for MCF10CA1a cells exposed to four media sup-

plements. TRANSCOMPP was used to compute best-fit transition rates for cells grown

in BM with the addition of individual components of CM: HC, CTX, INS and EGF

Table 1. Transition rate distributions for MCF10CA1a cells in different environments (reported as mean 6 SD)

Media CD24neg! CD24neg CD24neg! CD24pos CD24pos! CD24neg CD24pos! CD24pos

BM 0.90 6 0.010 0.10 6 0.010 0.03 6 0.005 0.97 6 0.005

CM 0.91 6 0.010 0.09 6 0.010 0.06 6 0.010 0.94 6 0.010

HC 0.93 6 0.010 0.07 6 0.010 0.06 6 0.009 0.94 6 0.009

CTX 0.81 6 0.015 0.19 6 0.015 0.01 6 0.004 0.99 6 0.004

INS 0.92 6 0.010 0.08 6 0.010 0.06 6 0.008 0.94 6 0.008

EGF 0.91 6 0.011 0.09 6 0.011 0.05 6 0.007 0.95 6 0.007
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Quantifying the rate of interconversion between the identified
phenotypic states will help us understand which key transitions
dominate dynamics and help us bias equilibria toward less aggres-
sive states.

Although previous work has dealt with similar issues, the follow-
ing features of TRANSCOMPP make it the first general-purpose method
developed toward this goal. First and foremost, our method integra-
tes the ability to handle states with different proliferation rates, and
hence can be used to run simulations where change in bulk popula-
tion is a result of both stochastic transitions and proliferation, which
can strongly affect the results of rate-fitting (Supplementary
Material S1). Second, our method employs optimization to minimize
the fitting error between the modeled trajectory and experimental
observations, computing the transition matrix that best explains the
variation across all replicates and time-points (Supplementary
Material S2). Third, our method computes transition rate distribu-
tions and uncertainty intervals around the computed transition ma-
trix, through repeated resampling. This allows us to perform
statistical tests comparing transition rates from different treatments/
environments. Fourth, our method does not impose constraints on
the number of replicates (sorted/unsorted) that can be used as input,
and hence is compatible with a wider variety of experimental
designs. Lastly, our method can be customized to work with differ-
ent error metrics (for model fit). Benchmarking Transcompp per-
formance suggests that Transcompp is scalable, can be applied to a
wider variety of datasets, and provides more robust performance
than existing tools like CellTrans (Supplementary Material S2 and
S3).

Applying TRANSCOMPP to the MCF10CA1a cell line model of
basal-like breast cancer, we showed that the equilibrium between
CD24neg stem-like and CD24pos non-stem cells could be influenced
by the composition of the cell culture medium (Figs 3–5). We also
used the resampling module of TRANSCOMPP (Fig. 6) to compute the
impact of experimental noise on the Markov transition rates, and
this suggested that HC or CTX supplementation exerted the stron-
gest influence on the transition rates (Fig. 7), although in opposite
directions. CTX (an agonist of the cAMP signaling pathway) pro-
moted accumulation of the non-stem-like CD24pos fraction. This is
in agreement with a recent report that PKA activation by CTX and
Forskolin causes mesenchymal–epithelial transitions in multiple

mammary cell lines (Pattabiraman et al., 2016). In contrast, HC was
found to favor an equilibrium with a much greater proportion of
stem-like CD24neg cells (�46%), compared to the equilibria seen
with BM (�23%), or other supplements such as INS (�40%) and
EGF (�36%) (Supplementary Material S9), which are known
inducers of plasticity (Abhold et al., 2012; Casta~no et al., 2013; Ma
et al., 2013; Malaguarnera and Belfiore, 2014; Tominaga et al.,
2017; Xu et al., 2017). Since HC is commonly prescribed for nausea
in cancer patients, our study raises questions about the safety of HC
for certain subtypes of breast cancer. Likewise, since HC is an ana-
log of the stress hormone cortisol, our finding suggests a novel av-
enue for why psychosocial stress is detrimental for certain subtypes
of breast cancer.

Applying TRANSCOMPP to published data from patient-derived
cells (Leong et al., 2014) showed that retrospective TRANSCOMPP pre-
dictions made from short-term experiments matched long-term
population behavior and steady-state population compositions
(Fig. 8). Short-term assays of long-term plasticity could become a
powerful tool for precision medicine because future anti-cancer
therapies will require not just targeting tumor-specific mutations but
also anticipating likely future trajectories [evolutionary-enlightened
design (Brown et al., 2017; Jonsson et al., 2017; Yeang and
Beckman, 2016)], in order to decrease the probability of chemo-
induced epithelial-mesenchymal transition (Kim et al., 2015; Sun
et al., 2012).

One caveat of TRANSCOMPP is that the computed rates are appro-
priate and relevant only when the user definitions of ‘state’ represent
all the distinct, physiologically relevant phenotypes in the sample.
Ongoing research to discover unbiased definitions of phenotypic
clusters from single-cell sequencing (Kanter et al., 2019; Patel et al.,
2014; Poirion et al., 2018; Zemmour et al., 2018) might resolve this
in the future. Additionally, TRANSCOMPP assumes that observable
population dynamics result only from Markovian stochastic transi-
tions and phenotype-specific proliferation, a commonly held as-
sumption. However, if the underlying biology in particular cases is
non-Markovian, one of two things might happen. Failure of the
best-fit Markov model to recapitulate experimentally observed dy-
namics might be suggestive of non-Markovian biology. In contrast,
if the biology is truly non-Markovian but still can be fit by a

Fig. 7. Transition rate distributions computed for each treatment show statistically-

significant differences, and result in different long-term equilibria. (A) Using the

resampling method, we obtained statistical distributions for each transition rate for

each environmental treatment. Shown here are the distributions for each of the four

transition rates. HC strongly promotes stem-like CD24neg population while CTX

promotes the non-stem CD24pos population (statistical tests show significance com-

pared with control and other environments). (B) The predicted trajectories and

range of steady-state CD24neg fractions, for each media condition, based on the

95% bootstrap uncertainty interval of transition rates from (A)

Fig. 8. Application of TRANSCOMPP to patient-derived cells. (A) At left, time-series

measurements of stem-like fractions (shown as mean and SD of three replicates),

using patient NCC-HN19 from Leong et al. (2014). Central panel shows the best-fit

transition rates computed by TRANSCOMPP. At right is the simulated trajectory using

the Markov model with the computed transition rates, plotted to show fit with ex-

perimental observations. (B) Computed transition rates for the other datasets in

Leong et al. (2014), including cells from patient NCC-HN1, and cells treated with

insulin þ EGF to favor stemness. (C) Points are experimental observations of cells

enriched for stem-like and non-stem cells in patient NCC-HN1. Dashed lines show

Markov model predictions computed from using 3, 6, 9 or 12 time-points (reflecting

9, 18, 27 or 36 passages, respectively)
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Markov model, our approach would not detect any problem. In
addition, perceived non-Markovian behavior could also be a result
of switching between different Markov equilibria (which might
occur due to binary activation/inactivation of key pathways). Non-
Markovian cases are a focus of our ongoing and future work.

In the present work, we use single-cell measurements of antibody
markers to define phenotype, but with the growth of droplet tech-
nology and single-cell measurements (e.g. scRNA-seq, single-cell
Westerns), we could in the future classify phenotypic categories at a
much higher resolution, creating a phenotypic landscape with fine-
grained differences in ‘state’. Since TRANSCOMPP is compatible with
all forms of single-cell data, it can be used to describe the ‘flows’ of
cells across this landscape.

In conclusion, we provide a novel tool to compute rates (and dis-
tributions) of stochastic transitions between phenotypic states. We
have employed TRANSCOMPP in analyzing immortalized and patient-
derived cancer cells in vitro and show the underappreciated perva-
siveness of plasticity. While applied to cancer in this study, the
technique of transition rate quantification has the potential to cap-
ture novel and interesting cell population dynamics throughout the
life sciences.
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