
METHODOLOGY Open Access

An expectation-maximization algorithm
enables accurate ecological modeling using
longitudinal microbiome sequencing data
Chenhao Li1,2, Kern Rei Chng1, Junmei Samantha Kwah1, Tamar V. Av-Shalom1,3,4, Lisa Tucker-Kellogg5 and
Niranjan Nagarajan1,2,6*

Abstract

Background: The dynamics of microbial communities is driven by a range of interactions from symbiosis to
predator-prey relationships, the majority of which are poorly understood. With the increasing availability of high-
throughput microbiome taxonomic profiling data, it is now conceivable to directly learn the ecological models that
explicitly define microbial interactions and explain community dynamics. The applicability of these approaches is
severely limited by the lack of accurate absolute cell density measurements (biomass).

Methods: We present a new computational approach that resolves this key limitation in the inference of
generalized Lotka-Volterra models (gLVMs) by coupling biomass estimation and model inference with an
expectation-maximization algorithm (BEEM).

Results: BEEM outperforms the state-of-the-art methods for inferring gLVMs, while simultaneously eliminating the
need for additional experimental biomass data as input. BEEM’s application to previously inaccessible public
datasets (due to the lack of biomass data) allowed us to construct ecological models of microbial communities in
the human gut on a per-individual basis, revealing personalized dynamics and keystone species.

Conclusions: BEEM addresses a key bottleneck in “systems analysis” of microbiomes by enabling accurate inference of
ecological models from high throughput sequencing data without the need for experimental biomass measurements.

Introduction
A growing body of literature points to the important
roles that different microbial communities play in
diverse natural environments [1, 2] and the human body
[3]. This has particularly been aided by advances in
next-generation sequencing technology, allowing for
rapid, cost-effective taxonomic and functional profiling,
combined with a computational analysis that has helped
associate the state of the microbiome with various envi-
ronmental conditions [1, 4] and human diseases [5–8].
Microbiomes are also constantly evolving, and there is
now a growing appreciation that complex interactions
between community members [9, 10] shape community

dynamics [11, 12] as well as overall function [13, 14]. A
systems view of the microbiome is thus essential for
understanding and rationally manipulating it [15].
Because of its importance, there have been many

approaches proposed to study microbial interactions and
dynamics. Experimental approaches have ranged from
simple two-species co-culture experiments [16–18] all
the way to complex, multi-stage reactor models [19].
Analytical approaches [20] frequently use simple correla-
tions between the abundances of various taxa in cross-
sectional datasets to infer microbial interactions [21–23].
There are several challenges that need to be addressed
in such analyses including the compositionality of
sequencing data [21–24], low sensitivity and specificity
of such methods [25, 26], and the inability to infer direc-
tionality of interactions or dynamics of the system [20].
The most commonly used approach for modeling

microbial ecology is based on classical predator-prey
systems, also referred to as generalized Lotka-Volterra
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models (gLVMs). gLVMs are based on ordinary differen-
tial equations (ODE) that model the logistic growth of
species; naturally capture predator-prey, amensalistic,
and competitive interactions; and have been applied to
study dynamics of microbial ecosystems ranging from
simple communities on cheese [27, 28] to the human
microbiome [15, 26, 29–32]. More importantly, from a
practical perspective, gLVMs have been used for a range
of applications including identifying potential probiotics
against pathogens [15, 29, 30], forecasting changes in
microbial density, characterizing important community
members (e.g., keystone species [26]), and analyzing
community stability [30, 32, 33].
Despite this, a key limitation of gLVMs that restricts

applicability and wider use is the requirement for micro-
bial abundance data on an absolute scale. Microbiome
analysis using high-throughput sequencing naturally
provides relative abundance estimates with what is often
referred to as “compositionality bias” [21, 22, 24] and
cannot be directly used to estimate gLVM parameters
[31]. Scaling relative abundances to an absolute scale
typically requires additional experimental data that is
either not readily available (as is true for the vast
proportion of publicly available datasets), is technically
challenging to directly quantitate for different sample
matrices and complex communities (e.g., using flow cy-
tometry [34, 35]), or can suffer from significant technical
[36–38] and biological noise [39] (e.g., using 16S rRNA
qPCR [15, 29, 30]).
In the face of these technical challenges, gLVM

inference can seem daunting, especially because rela-
tive abundances do not seem to carry any informa-
tion related to an absolute scale. Notably, we show
that suitable scaling factors can be directly inferred
from microbiome sequencing data, through an algo-
rithm that couples biomass estimation and gLVM
inference in an expectation-maximization (BEEM)
[40] framework. This approach alternates between
learning scaling factors and gLVM parameters and
thus obviates the need for experimental scaling fac-
tors which otherwise limits the use of many existing
datasets. Based on synthetic data where absolute cell
density (biomass) is precisely known, we show that
BEEM-estimated gLVM parameters are as accurate
as those estimated with noise-free biomass values,
and significantly more accurate than what could be
expected with commonly used (16S rRNA-based)
experimentally determined biomass estimates. Using
data from a freshwater microbial community with
flow cytometry-based gold-standard cell counts, we
show that biomass estimated using BEEM has good
concordance with the gold standard and improves
significantly over the existing techniques to
normalize data. Leveraging BEEM’s unique ability to

learn gLVMs from relative abundance data, we
analyzed publicly available datasets that represent
the longest human gut microbiome time series data
available to date [41–43]. This analysis highlighted
the personalized dynamics of gut microbial biomass
in different individuals, with communities driven by
distinct interaction networks and hub species. Our
analysis suggests an emergent model for gut micro-
bial dynamics where relatively low abundance species
may play key roles in maintaining gut homeostasis.

Results
Experimentally obtained biomass estimates can lead to
inaccurate gLVMs

The gLV equations model the growth rate (dxiðtÞdt ) of each
microbial species i as a function of absolute cell densities
(xi(t)) of all the p species in a community:

dxi tð Þ
dt

¼ μixi tð Þ þ
Xp
j¼1

βijxi tð Þx j tð Þ: ð1Þ

In the above model, the intrinsic growth rate parameter
(μi) and self-interaction parameters (βii) define the logistic
growth behavior of species i. In addition, the model also
captures the impact of the absolute density of species j on
the growth rate of species i through additional parameters
(βij, i ≠ j), assuming a linear and additive effects model. As
high-throughput sequencing-based approaches to analyze
microbiomes only provide relative abundance estimates,
scaling factors related to the total biomass for each sample
are then needed to accurately fit gLVMs in practice.
The predominantly used approach to estimate total

biomass is to quantify the copy number of the 16S rRNA
gene using quantitative PCR (qPCR) [15, 29, 30]. How-
ever, 16S qPCR estimates have been reported to have a
high technical noise, with a coefficient of variation (CV)
ranging from 11 to 75% [36–38]. To reconfirm this, we
reanalyzed 16S qPCR data from a recent microbiome
modeling study on Clostridioides difficile infections [30]
and observed low concordance across technical repli-
cates (Spearman ρ < 0.22; Fig. 1a and Additional file 1:
Figure S1A), as well as high coefficient of variation
(mean CV = 51%). Another critical source of error with
16S qPCR-based biomass estimates is biological and
arises due to the fact that bacteria can have a widely
varying number of copies of the 16S rRNA gene, even
within the same ecological niche. For example, the 16S
gene copy number of the 4 major gut bacterial phyla
cover a broad spectrum (Fig. 1b), ranging from a single
copy to 15 copies [39]. Correspondingly, 16S qPCR-
estimated biomass of a community dominated by
Firmicutes can be twice as much as that of a community
dominated by Bacteroidetes, even if both communities
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have exactly the same cell density (100% relative error).
Such large relative errors can then have a significant
impact on the accuracy of gLVMs estimated from the
data, as we show below.
To test the impact of biomass estimation errors on

model inference, we generated synthetic datasets (10
species community) based on the parameters inferred
from real datasets, similar to the approach in Bucci et al.
[29] (see the “Materials and methods” section). This
framework allows us to carefully evaluate the impact of
different levels of noise in a setting where model para-
meters are known. We noted that, given error-free
biomass data, a state-of-the-art method (MDSINE [29])
was able to infer model parameters with median relative
error < 20% and with ~ 90% median AUC-ROC (area
under the sensitive-specificity tradeoff curve) for inter-
action terms (β; Fig. 1c, noise-free). However, as
expected [31], directly using relative abundance esti-
mates without scaling them increased the median rela-
tive error for parameter estimates to > 60% (Fig. 1c, RA),
with AUC-ROC for interaction terms being comparable
to the randomly generated parameters from the prior
model for the simulation (Fig. 1c, random). Similar

performance was obtained using another model fitting
algorithm that works with relative abundance data and
assumes small fluctuations in biomass values (LIMITS
[26, 44]; Additional file 1: Figure S1B). Using simulated
biomass data with error profile similar to real qPCR data
(CV = 51%; without systematic errors due to varying
copy number of the 16S rRNA gene; see the “Materials
and methods” section), surprisingly, did not improve the
performance substantially when one technical replicate
was provided (Fig. 1c, qPCR_rep1), and even with three
technical replicates, the growth rate parameter estimates
(median relative error > 70%) were comparable to ran-
dom (Fig. 1c, qPCR_rep3). These results highlight that
experimental errors in biomass estimates can signifi-
cantly impact the gLVM parameter estimation even in a
relatively well-controlled setting where model assump-
tions are strictly applied.

Joint estimation of biomass and model parameters with
BEEM
In order to address the challenges of noisy experimental
biomass data and, in general, to make the gLVM model-
ing more widely applicable where biomass estimates are

A B

C

Fig. 1 Noise in experimentally determined biomass severely distorts gLVM parameter estimation. a Scatter plot with fitted linear regression line
for 2 16S qPCR technical replicates from Bucci et al. b Copy number variation for 16S rRNA genes in members of 4 major phyla of human gut
bacteria. c Relative impact of different experimental (qPCR_rep1, 1 qPCR technical replicate; qPCR_rep3, mean of 3 qPCR technical replicates) and
computational (RA, relative abundance; CSS, CSS normalization) data scaling approaches on gLVM parameter estimation (BVS algorithm for
MDSINE), in comparison with using noise-free biomass or using BEEM. Boxplots represent the summary of 15 simulations (10 species, 30 replicates
with 30 time points each), and 3 different metrics are shown here including median relative error for growth rate (μ) and interaction (β)
parameters, and AUC-ROC for the interaction network. Dashed horizontal lines represent the performance of randomly generated parameters
from the simulation model
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not available, we explored the idea of learning gLVM pa-
rameters directly from relative abundance data. To
achieve this, we first note that model Eq. 1 can be
expressed in terms of relative growth rates by dividing
both sides of the equation by xi(t):

dxi tð Þ
dt

=xi tð Þ ¼ d lnxi tð Þ
dt

¼ μi þ
Xp
j¼1

βijx j tð Þ:

By explicitly introducing relative abundances ( ~xiðtÞ )
and total biomass (m(t), where xiðtÞ ¼ mðtÞ~xiðtÞ ), we
get:

d lnm tð Þ þ ln~xi tð Þð Þ
dt

¼ μi þm tð Þ
Xp
j¼1

βij~x j tð Þ:

The biomass terms on the left-hand side (LHS) of the
equation can be eliminated by subtracting the equation
of a selected species r from the equations for all other
species, resulting in a new system:

dyi tð Þ
dt

¼ ai þm tð Þ
Xp
j¼1

bij~x j tð Þ; i≠r;

where yiðtÞ ¼ lnð~xiðtÞ=~xrðtÞÞ and the equations are
re-parameterized by ai and bij, which are related to the
original parameters (ai = μi − μr and bij = βij − βrj). This
new system has the advantage that all unknowns are on
the right-hand side (RHS) of the equation and the gradi-
ent term on the LHS can be estimated directly from
relative abundance data through spline smoothing and
numerical differentiation [15, 26, 29, 30].
We then made the observation that the above

equations can be re-written as two regression problems
across two dimensions of the data matrix (~xiðtÞ; ∀i; t):

– For each time point t, the biomass can be solved for
via regression given the model parameters a and b
for all the species.

– For each species i, the corresponding parameters ai
and bij can be solved through gradient matching
[15, 26, 29, 30], given the biomass at each time point
t (m(t)).

The interlock of the above two problems provides the
basis for an expectation-maximization algorithm that
alternates between estimating model parameters and
biomass iteratively and forms the core of BEEM (see the
“Materials and methods” section for details). Note that
the estimates provided by BEEM for the biomass act as
scaling factors to bring abundances across species and
time points to the same scale for learning gLVMs.
On the synthetic datasets used in the previous section,

we noted that despite not having any biomass data to

work with, BEEM was a significant improvement over
naïve analysis based on relative abundance data, as well
as the results based on scaled relative abundances with
noisy biomass data (~ 3× reduction in relative error;
Fig. 1c, BEEM). In fact, BEEM-estimated parameters
were nearly as accurate as those obtained using noise-
free biomass data (relative error for growth rate and
interaction terms), except for a slight decrease in AUC-
ROC for interaction terms (primarily due to the round-
ing errors that provide non-zero estimates for zero
terms). In comparison, other competing approaches
(RA, qPCR, CSS) provided AUC-ROC performance simi-
lar to what is expected at random. Normalization
approaches such as CSS [45] and TMM [46] (Fig. 1c,
CSS; Additional file 1: Figure S1B; see the “Materials and
methods” section) were tested here as control analytical
methods but are not expected to work in general as they
are designed to identify scaling factors that do not
change across samples. We noted that BEEM’s signifi-
cant improvement over other experimental and compu-
tational approaches and its ability to closely approximate
analysis using noise-free biomass estimates is a robust
feature that remains valid even when experimental bio-
mass estimates are significantly better (CV = 5%, as
expected from flow cytometry data) and while using dif-
ferent parameter estimation approaches or evaluation
metrics (Additional file 1: Figures S1B and Figure S2).

BEEM accurately estimates gLVM parameters and biomass
in diverse model settings
As in any situation where parameters have to be
estimated, a sufficient number of data points (multiple
biological replicates, referred to as replicates in the
following sections) covering the dynamics of abundance
change (e.g., recovery of the microbiome after a perturb-
ation) are needed to get accurate gLVM models, and this
in turn impacts the BEEM’s biomass estimates. In order
to further study the BEEM’s performance characteristics,
we generated synthetic datasets with a varying number
of species and data points, comparing BEEM’s results to
those obtained with noise-free biomass data and the
same gradient matching algorithm (BLASSO, see the
“Materials and methods” section) as used internally in
BEEM. As expected, when the number of species in-
creases but the number of data points remains constant
(60 replicates with 30 time points), gLVM parameter
estimation becomes harder (Fig. 2a). However, despite
the quadratic increase in the number of parameters, the
performance for both BLASSO (with noise-free biomass)
and BEEM seems to only degrade linearly (Fig. 2a). In
addition, even when the model has 25 species (650 model
parameters) and can thus capture over 90% of the overall
species abundance in a majority of human gut micro-
biomes [47] (but not all; Additional file 1: Figure S3),
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interaction parameters estimated by BEEM were nearly as
accurate as those with noise-free biomass (Fig. 2a), though
the growth rate parameters were more affected. For
learning models with more species, a linear increase
in the number of samples available was sufficient
(Additional file 1: Figure S4). We also noted that the
median relative error for biomass estimates from
BEEM was generally well-controlled (< 10%; Fig. 2b).
Increasing the number of data points available for

model fitting for a fixed number of species (10)
improved the performance for both BLASSO with noise-
free biomass and BEEM, as expected. Performance
improvements were most notable when going from 10
to 20 replicates and plateaued out after that (30 time
points; Fig. 2c). In general, after 20 replicates, differences
between BLASSO and BEEM were small, especially in
terms of estimating interaction parameters. Similarly,
biomass estimates from BEEM had a median relative
error < 5% when 20 replicates were available (Fig. 2d). In
general, our analysis suggests that inherent limitations in
gradient matching based on estimated gradients from
data were a greater source of error for gLVM parameter
estimation in many of our experiments than errors in

BEEM-estimated biomass values. We also noted that
some simulated datasets had significantly lower perfor-
mance even when noise-free biomass values were
provided, due to the presence of many time points that
were close to equilibrium. Time points close to the equi-
librium lead to noisy gradient estimates, and BEEM
identifies and excludes such data points from its analysis
(see the “Materials and methods” section).
To assess BEEM’s performance for biomass infer-

ence in real-world datasets, we analyzed data from a
recently published study on freshwater microbial com-
munities [34, 35], which to our knowledge is the only
one to have longitudinal microbiome sequencing data
as well as flow cytometry-based gold-standard bio-
mass estimation. Notably, the flow cytometry data in
this study was reported to have high reproducibility
(CV < 5%) [34] and therefore was suitable for use as
the ground truth for total biomass. Surprisingly, with
only 57 time points in total across 2 replicate experi-
ments, BEEM was able to infer the total biomass for
a 26-species community accurately solely based on
relative abundances from 16S sequencing. BEEM-
estimated biomass values showed a strong correlation

A B

C D

Fig. 2 Robustness of parameter estimation with BEEM. a Results with an increasing number of species but fixed number of replicates (60). As
expected, parameter estimation gets harder, but BEEM’s performance tracks the ideal case using BLASSO with noise-free biomass values,
especially for interaction parameters. b Median relative error in biomass estimates remains less than 10%. c Results with an increasing number of
replicates and fixed number of species (10). BEEM’s performance converges to that of BLASSO with noise-free biomass as the number of
replicates increases. d Median relative error in biomass estimates reduces noticeably as the number of replicates increases
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with flow cytometry data (BEEM: Spearman’s ρ = 0.73,
Pearson’s r = 0.74; Fig. 3a), and its trajectories closely
tracked measured fluctuations (Fig. 3b). In contrast
and as expected, normalization approaches provided
estimates that had either weak correlation (CSS:
Spearman’s ρ = 0.36, Pearson’s r = 0.35) or negative
correlation with experimentally determined values
(TMM: Spearman’s ρ = − 0.11, Pearson’s r = − 0.11;
Fig. 3a).
Considering the lack of data for real microbial

communities with well-characterized interactions, we
pooled experimentally the measured growth charac-
teristics for seven different species in a dense time
series and used the data to compute the relative
abundances for a community over time that would
evolve under the assumption of no inter-species
interactions. In addition to accurately estimating the
biomass (Additional file 1: Figure S5A), BEEM was
found to have a low false-positive rate (< 3% and < 8%
using the most stringent and default thresholds, res-
pectively) out of a total of 42 possible interaction terms
(Additional file 1: Figure S5B). MDSINE, however, had
much higher false-positive rates using different scaling
approaches including with the true biomass values (> 26%
and > 52% using the most stringent and default thresholds,
respectively).

Personalized gut microbial dynamics and keystone species
The development of BEEM allows us to analyze previously
generated datasets in a gLVM framework, even when bio-
mass measurements were not made in the original study.
To showcase this capability, we applied BEEM to the lon-
gest (over 1 year) and most densely (almost daily) sampled
human gut microbiome time series datasets available to
date (four individuals: DA, DB from David et al. [42] and
M3, F4 from Caporaso et al. [41]; individually modeled
assuming sufficient perturbations to reveal dynamics).
BEEM-estimated models exhibited a good fit to the data,
with predicted relative abundances for a day based on nu-
merical integration from the previous day being in high
concordance with the observed data (median Spear-
man’s ρ = 0.84, median Pearson’s r = 0.90). In addition,
BEEM-inferred growth rates were found to be con-
cordant with the growth rates reported in the AGORA
database based on the genome-scale metabolic model-
ing (Spearman’s ρ = 0.79, Pearson’s r = 0.74; Additional
file 1: Figure S6) [48]. Finally, BEEM correctly identi-
fied several key interactions that have previously been
validated using low-throughput experiments, including
the inhibitory interactions between Bacteroides unifor-
mis and Enterobacteriaceae [49], Feacalibacterium
prausnitzii and Enterobacteriaceae [50–52], and B.
uniformis and F. prausnitzii [53].

A

B

Fig. 3 Concordance of BEEM-estimated biomass with gold-standard experimental measurements. a Scatter plots with fitted linear regression line
highlighting that BEEM’s biomass estimates are notably more concordant with flow cytometry-based values compared to CSS and TMM normalization
based estimates. b BEEM-estimated biomass values (orange) compared to gold-standard measurements using flow cytometry (black)

Li et al. Microbiome           (2019) 7:118 Page 6 of 14



As BEEM directly infers daily biomass values, we plot-
ted these and observed distinct individual-specific pat-
terns: while subject DA’s biomass was found to vary
relatively smoothly, following an approximately cyclic
pattern with a period of about 3 months (Fig. 4a), sub-
ject M3’s biomass fluctuated to a greater extent on a
day-to-day basis with no clear trend (Fig. 4b). Similar
patterns were observed in parts for subjects DB and F4,
which had a greater resemblance to DA overall (Add-
itional file 1: Figure S7A, B). The fluctuations predicted
in M3’s biomass were also found to be present alongside
(but not correlated with, ρ < 0.14) frequent blooms of
rare taxa (relative abundance) that were not detected at
other time points [43] and maybe a consequence of this
instability in the community. In contrast, the smoother
progression of DA’s biomass may be a reflection of the
relative stability of the gut community in this individual,
though the source of the observed cyclic patterns de-
serves to be explored further. As an initial hint, we noted

that the strongest association between DA’s biomass and
reported metadata was a negative correlation with
calcium intake (Additional file 1: Figure S8).
We visualized the interaction terms predicted by

BEEM as a weighted directed network for each individ-
ual (Fig. 4c, d; Additional file 1: Figure S7C, D). Con-
cordant with their distinct biomass dynamics, DA and
M3 also exhibited microbial interaction networks that
were unique to them (Fig. 4c, d). DA’s network was de-
fined by hub nodes for Feacalibacterium prausnitzii (s1)
and Bacteroides uniformis, two species with many bene-
ficial roles and frequent associations with a healthy gut
[54, 55]. The hubs were found to negatively affect the
growth of an Enterobacteriaceae species (s1), consistent
with previous reports for B. uniformis [49] and F. praus-
nitzii [50–52]. In comparison, the major hub nodes in
M3’s network were a Blautia and an Oscillospira species
(s1) that were connected by a positive feed-forward loop.
Additionally, we found that abundances of the Blautia

A B

Fig. 4 BEEM analysis of year-long gut microbial time series datasets. a, b BEEM-estimated biomass values for two individuals (DA and M3) with
daily sampled, year-long gut microbial time series datasets from David et al. [42] and Caporaso et al. [41]. Interestingly, while M3’s biomass
fluctuates rapidly, DA’s biomass seems to vary in a more defined fashion with a periodicity of around 3months. c, d Graphs representing non-
zero interaction terms in gLVM models learnt individually for DA and M3 using BEEM. Dashed and solid edges represent positive and negative
interactions, respectively. Edge widths are proportional to the interaction strength, and node sizes are proportional to the log-transformed mean
relative abundance of the corresponding species. Nodes are labeled with the most specific taxonomic annotations and colored according to
order level information
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and Oscillospira species were significantly negatively cor-
related with total biomass in M3’s gut microbiome
(Additional file 1: Figure S9). Feed-forward loops have
been implicated in destabilizing effects on ecosystems
[32], and so these observations may explain the unstable
behavior of M3’s biomass as well as the corresponding
susceptibility to invasive blooms of rare taxa [43]. Blau-
tia’s protective role in M3’s gut flora is further indicated
by its inhibition of B. fragilis (s1), an opportunistic
pathogen that has been associated with diarrhea [56].
Interestingly, several of the transient species in M3’s gut
microbiome were observed to be at the periphery of the
network, with a single incoming edge indicating that
their abundances were being influenced by a hub
species. For example, this was observed for several
Streptococcus species that are primarily oral commensals
and could be transient colonizers of the gut [57, 58].
Despite the differences in the identity of species in

their interaction networks, the various individual-specific
networks shared some common features, including the
presence of a few hub nodes that negatively influenced
many other species, and were generally not the most
abundant species in the community (Fig. 4c, d;
Additional file 1: Figure S7C, D). Overall, we also found
that the ratio between out- and in-degree of species in
the networks was negatively correlated with their mean
relative abundances (Additional file 1: Figure S10), sug-
gesting that the hub species in the interaction network,
which are often considered as keystone species for the
community [26, 59], are typically not the abundant spe-
cies in the gut microbiome. We further confirmed this
observation by analyzing a large collection (840 healthy
individuals) of gut microbiome datasets [47], to find that
the core species in the gut microbiome were also fre-
quently not the most abundant species (Additional file 1:
Figure S11). Together, these observations suggest a
model for the gut microbiome where relatively less
abundant species in the community are more stable col-
onizers of the host, and by virtue of their impact on the
growth of other species in the community, play an
important role in defining its dynamics in different
individuals.

Discussion
A major limitation of most microbiome profiling
datasets available to date is the restriction to relative
abundances and the “compositionality” of this data
has led to significant challenges even when per-
forming common statistical tests for correlated abun-
dances [60]. These issues are amplified when
considering systems models such as gLVMs, and our
analysis here confirms that the model parameter
estimates can be severely distorted if relative abun-
dances are not correctly scaled. In ecological models

such as gLVMs, interactions between species are nat-
urally a function of the absolute density of species in
a community rather than their relative abundances
[61, 62]. Correspondingly, while autoregression-based
methods such as sVar [43] and ARIMA [63] provide
an alternative for model fitting with relative abun-
dance data, ecological interpretations for their
models and parameters have not been put forward
(e.g., species growth rate or carrying capacity). In
addition, experimental approaches to measure scaling
factors are generally seen as a laborious and occa-
sionally feasible way to work with absolute abun-
dances. However, as we show here, this may not be
the case if care is not taken to ensure that experi-
mental noise is minimized and a sufficient number
of technical replicates are analyzed. By eliminating
the need for additional experimental data, BEEM
greatly expands the applicability of gLVMs to the
microbiome datasets, and its robustness could simul-
taneously improve the quality of models and scaling
factor estimates, as observed in our synthetic and
real datasets. Explicitly modeling microbial inter-
actions through gLVMs has proven to be a powerful
framework for studying microbial community dy-
namics [15, 26–32], and the approach used in BEEM
could also be extended (with minimal modifications)
to time series with external perturbations (e.g., anti-
biotics usage) [15, 29, 30], as well as system models
for gene expression regulation based on RNA-seq
data [64].
Due to limited availability of absolute abundance

data, gLVMs have generally been constructed by ag-
gregating information across experiments and individ-
uals [15, 29, 30]. We exploited the availability of
year-long time series datasets and BEEM’s facility
with relative abundances to construct individual spe-
cific gut microbiome gLVMs. Intriguingly, we ob-
served that our inferred scaling factors suggest that
gut microbial biomass has distinct dynamics across
different individuals. Consistent with a recent study
on 20 individuals where human gut microbial biomass
(measured via flow cytometry) was found to have high
variation (CV ≈ 53% within a week) [60]; we also
noted high variability over time across the four indi-
viduals we analyzed (CV ranging from 49 to 76% over
a year). Misleading conclusions are likely to be drawn
without accounting for such variation, and BEEM-
estimated biomass values may be useful with other
statistical and ecological modeling methods as well.
Additionally, we observed cyclic behavior of biomass
trajectories in multiple individuals, similar to the
seasonal patterns reported in hunter-gatherers of
Western Tanzania [65], and the conserved patterns
observed in other mammals across evolutionary
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timescales [66]. Similar patterns have not been
reported before for western city dwellers, perhaps due
to the confounding effects of aggregate analysis across
individuals and the impact of highly diverse diets.
BEEM analysis, however, suggests that the underlying
patterns may still be conserved in urban subjects and
may be more general than previously believed.
Our inference of the gLVM models for each individual

allows us to identify specific microbial species and the
kinds of interactions that they have, to account for the
distinct dynamics that were observed. For example, the
positive feed-forward loop observed between the hubs in
M3’s gut microbiome provides a specific, plausible, and
testable hypothesis to explain the instability observed
there, and this capability can be valuable in future stud-
ies where targeted interventions are feasible. Despite the
differences in the microbial interaction networks ob-
served for different individuals, a shared feature seems
to be the presence of relatively lowly abundant species
that act as hub nodes in the network. A similar pattern
was seen in cross-sectional data as well where frequently
shared “core” gut microbiome species tend to not be the
most abundant species in the community. These obser-
vations point to a model where species at low relative
abundances stably colonize the gut (e.g., mucosa-
associated ones) compared to abundant but transient
(lumen-associated) bacteria and play an important role
in defining gut microbiome dynamics. In particular, hub
species were frequently found to negatively regulate
more transient species in the community, in agreement
with the known role of mucosa-associated species in
providing colonization resistance against invasive patho-
genic species [67]. We envisage that perturbation experi-
ments with in vitro [68] and in vivo systems [69] could
help further validate such predictions and the ability to
forecast abundance changes using gLVMs learnt by
BEEM.
An important point that we noted in the gut micro-

biome datasets that were analyzed here is the limited
number of stable species (prevalent in most time points
for an individual) that are shared across individuals. This
feature makes it infeasible to learn gLVM models by
merging short time series datasets across different indi-
viduals. Similar constraints might be present in other
microbial communities as well, including specific chal-
lenges in measuring total biomass in complex matrices
[60], and thus, the development of BEEM makes it more
feasible to generate the long and densely sampled data-
sets that are needed for such models. As the complexity
(number of species) of modeled communities grows,
BEEM models also require a linear increase in the num-
ber of available samples. The analysis in BEEM can po-
tentially be directly extended to cross-sectional datasets
if the corresponding communities are believed to be at

equilibrium (i.e., dxiðtÞdt ¼ 0, for all species). This extension
would significantly expand the amount of data that
could be used and thus allow us to learn even more
complex models in the future. As is the case for any
modeling approach, no model is expected to be perfect,
but as they capture more and more features of real
systems, we can expect that their predictions become in-
creasingly useful. BEEM’s development therefore serves
as an important step in expanding the use of modeling
approaches to study microbial community dynamics and
rationally identify appropriate perturbations.

Conclusions
We present a novel algorithm, BEEM, that addresses a
key bottleneck in “systems analysis” of microbiomes by
enabling accurate inference of ecological models from
time course high-throughput microbiome sequencing
data without the need for experimental biomass mea-
surements. This approach circumvents the limitations of
16S rRNA qPCR-based biomass measurement and its
underappreciated adverse impact on model fitting accu-
racy. BEEM’s robustness was established based on
systematic evaluations with synthetic and real datasets.
Its application to year-long human gut microbiome data
revealed novel insights into personalized microbiome
dynamics driven by distinct keystone species. We there-
fore expect BEEM to be a useful tool for the microbiome
community in obtaining deeper insights into how micro-
bial interactions determine system-level behavior.

Materials and methods
BEEM’s core algorithm
As introduced in the “Joint estimation of biomass and
model parameters with BEEM” section, the gLVM model
in Eq. 1 can be first simplified by dividing xi(t) on each
side and then re-written in terms of total biomass m(t)
(i.e., mðtÞ ¼Pp

i¼1xiðtÞ ) and relative abundances ~xiðtÞ
(i.e., ~xiðtÞ ¼ xiðtÞ=mðtÞ) as shown below:

d lnm tð Þ þ ln~xi tð Þ
dt

¼ μi þm tð Þ
Xp
j¼1

βij~x j tð Þ: ð2Þ

To eliminate the biomass-related term in the LHS of the
equation, we subtract the corresponding equation for a
reference species r (species with lowest CV, by default)
from both sides of the system, resulting in additive log ra-
tio (ALR)-transformed [70] relative abundances ( yiðtÞ
¼ lnð~xiðtÞ=~xrðtÞÞ ) on the LHS and a re-parameterized
RHS:

dyi tð Þ
dt

¼ ai þm tð Þ
Xp
j¼1

bij~x j tð Þ; i≠r;

where ai = μi − μr and bij = βij − βrj.
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An estimate for dyi(t)/dt, denoted as Yit, can be calcu-
lated as the derivative of a piece-wise polynomial spline
fitted to the ALR-transformed relative abundances (yi(t),
see the “Robust parameter estimation with BEEM” sec-
tion for details). Given the following model for p species:

Y it ¼ ai þmt

Xp
j¼1

bij ~Xjt þ ϵ; ϵ � Normal 0; σ2
� �

;

where ~Xit ¼ ~xiðtÞ and mt =m(t) are the variables written
in their matrix representations, we can write the following
likelihood function:

Q a;bja T−1ð Þ; b T−1ð Þ
� �

¼ EMja T−1ð Þ;b T−1ð Þ;X;Y L a; b;X;Y ;Mð Þ½ �
¼
Z

L a;b;X;Y ;Mð Þδ M−mð ÞdM
¼ L a; b;X;Y ;mð Þ ¼

Y
t

Y
i

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−

Y it− aiþmt

Xp
j¼1

bij ~Xjt

 ! !2

2σ2 ;

where a and b are the model parameters, δ(M) is a
Dirac delta function for the biomass values, and L(a, b;
X, Y,M) is the likelihood function with respect to a and
b for the above regression problem. The parameters are
then solved with the following EM algorithm.

Biomass estimation (E-step)

In iteration T, with âðT−1Þi and b̂
ðT−1Þ
ij from the previous

iteration, the biomass m̂ðTÞ
t for each T can be computed

as the coefficient of the following linear regression:

U Tð Þ
ti � m Tð Þ

t V Tð Þ
ti ; i≠r;

where U ðTÞ
ti ¼ Y it−â

ðTÞ
i and V ðTÞ

ti ¼Pp
j¼1 b̂

ðTÞ
ij

~Xjt . Note

that accurate estimation of biomass through this regres-
sion requires a sufficient number of data points (number
of species > 6), and BEEM will warn users if this is not
the case.

Model parameter estimation (M-step)

With estimated biomass from the E-step, m̂ðTÞ , BEEM

estimates âðTÞi and b̂
ðTÞ
ij for each i (i ≠ r) based on the

following regression problem (also known as gradient
matching):

< â Tð Þ; b̂
Tð Þ

>¼ argmax
a;b

log Q a; bja T−1ð Þ; b T−1ð Þ
� �� �

¼ argmax
a;b

log L a; b;X;Y ; m̂ Tð Þ
� �� �

:

Solving the above system is often limited by the amount
of data available in practice. For microbial communities, it
is usually assumed that the interaction vector (βij) is sparse
(i.e., a species is only directly affected by a small number
of other species). Consequently, the transformed matrix
bij is also sparse, and BEEM estimates it using a sparse

regression technique based on a Bayesian approach
(Bayesian lasso—BLASSO [30]; R package “monomvn”
version 1.9-7; default parameters) [71].

Initialization
For the initialization step in its EM algorithm, BEEM as-
sumes that scaling factors inferred from a commonly
used normalization approach for microbiome data (cu-
mulative sum scaling—CSS [45]) provides a reasonable
starting point for the algorithm to then learn better scal-
ing factors. Note that, as expected, scaling factors from
CSS normalization and BEEM cannot recapitulate the
absolute scale corresponding to experimental measure-
ments (e.g., by qPCR or flow cytometry), and so their
estimates were scaled to the same median value across
the time series as experimental measurements for sub-
sequent comparisons. In practice, the true scale of all
samples can be recovered by measuring the biomass for
a single sample accurately. BEEM implementation also
checks to ensure that sufficient number of data points
are available to estimate gLVM models for the given
number of species (number of data points > number of
parameters) and will warn users otherwise. Time points
near equilibrium (> 80% species that change < 5% in
relative abundance) are excluded from BEEM analysis to
avoid noise in gradient estimation.

Termination and parameter estimation
The E- and M-steps in BEEM are run until convergence
or a user-specified maximal number of iterations. The
search was assumed to have reached convergence (to a
local optimum) when the mean squared error (MSE,
smoothed using a moving median with a window size of
3) for the E-step varies by less than a user-specified tol-
erance (0.1% by default) for 3 consecutive iterations [72].
In practice, on the real datasets analyzed in this study,
convergence takes ~ 1 h using 4 CPUs. Estimates for âi ,

b̂ij , and m̂t were calculated as the median of the values
from all iterations (excluding the first 30 iterations)
whose MSE was within 5% of the minimal MSE. BEEM
throws a warning message if it does not converge within
the user-specified number of iterations or if the observed
fit to the data is poor (biomass-normalized MSE > 10−5).

Robust parameter estimation with BEEM
In our experiments with synthetic and real data, we
noted that gLVM modeling can be sensitive to noise and
outliers in the data, and this in turn could affect estima-
tion of scaling factors with BEEM. To address this, we
refined the core algorithm in BEEM with additional pre-
processing steps that further enable robust parameter
estimation.
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Outliers in relative abundance data
We observed in our numerical analysis that outliers in
the abundance data could notably affect the spline fitting
procedure and lead to spurious gradient estimates. To
obtain more robust spline fitting, an over-smoothed
spline was first fitted to yi(t) (function “smooth.Pspline”
from R package “pspline” [73] with maximal degree of 5
and a large smoothing parameter “spar = 1e10”) to calcu-
late the absolute error in fitted values (eit = ∣ yi(t) − yi(t)

s-

moothed∣), and points with absolute error larger than
expected ( ðeit−median jðeijÞÞ=MAD jðeijÞ > τ , τ = 5 by
default) were then filtered out. The final smoothing
spline was fitted (degree of 5 and smoothing parameter
selected using cross validation) to the remaining data to
calculate the estimated gradients Yit. In addition, outliers

in biomass estimated from the previous iteration (m̂ðT−1Þ
t )

were identified in the same way and replaced with inter-
polated values from the spline.

Outliers in estimated gradients
In practice, gradient matching-based methods (including
the various algorithms implemented in MDSINE) were
found to be sensitive to outliers in the estimated gra-
dients (i.e., Yit). To identify outliers in a time series (Yit,
for all t), a local regression (LOESS) smoother was fitted
to de-trend Yit, and the outliers were filtered out as
described above.

Estimating constrained biomass values
For each time point, biomass was estimated as the slope

of a linear regression (U ðTÞ
tk against V ðTÞ

tk ) where outliers

in both U ðTÞ
tk and V ðTÞ

tk were identified and removed fol-
lowing a standard boxplot approach, i.e., as deviations
from the median by more than 1.5× inter-quartile range.
In addition, the biomass was constrained to be positive by

removing points where U ðTÞ
ti and V ðTÞ

ti had different signs.

Recovering gLVM parameters
Based on the previously stated assumption that the
interaction matrix β is sparse, most entries in each col-
umn are expected to be zero and thus the median value
for the jth column in b would be expected to be −βrj,
allowing us to infer back all the other rows of β (βij =
bij + βrj, default implementation in BEEM’s “paramFro-
mEM” function). BEEM then assigns a Z-score like con-
fidence value (sij) to each entry of β, by dividing the
estimated interaction strength by the column standard

deviation (sij ¼j β̂ij=σ j j). The growth rate vector μ is not

expected to be sparse but can be recovered by directly
solving the original gLVM system (Eq. 2), using the
already derived estimates for scaling factors and β. For
robustness, BEEM estimates the growth rate for each

species as the median of positive estimates across all
time points. BEEM also provides a “non-sparse” mode
(setting argument “sparse” to “FALSE” in the “para-
mFromEM” function) to estimate all parameters by
solving the gLVM system directly with estimated
biomass values.

Datasets and evaluation metrics
Simulated datasets
MDSINE’s Bayesian variable selection (BVS) algorithm
(with spline smoothing option and minor bug fixes:
https://bitbucket.org/chenhao_li/mdsine) was used to
estimate the parameters from the C. difficile infection
dataset provided with the package [30]. Simulated data-
sets were then generated based on these estimated
parameters following the procedure described in Bucci
et al. [30] (excluding perturbations) by numerically inte-
grating the gLVM with randomly generated initial states
(mimicking the recovery of the microbiome after a ran-
dom perturbation). Unless stated otherwise, we gener-
ated simulated data with 10 species, 60 replicates (with
different random initial states) with 30 time points each.
Noisy abundances were obtained by sampling from Pois-
son distributions [74] with means based on scaled abun-
dances at each time point (sum = 5 × 104). Simulated
qPCR and flow cytometry-based values for total biomass
were generated from log-normal distributions with
coefficients of variation (CV) that matched those seen
in real datasets (qPCR = 51% [30], flow cytometry = 5%
[34, 35]). For each condition with varying number of
species or replicates and different biomass estimation
techniques, 15 simulated datasets with different model
parameters were tested.

Dataset from Props et al.
The original OTU table was obtained from the authors
[35]. Samples for the “operation” stage, where the envir-
onment had roughly constant temperature were selected
for BEEM analysis. OTUs with low mean relative abun-
dances (< 0.1%) were excluded to ensure that sufficient
data is available to fit the model parameters, resulting in
26 OTUs across 58 time points from 2 replicates.

Dataset from Gibbons et al.
This dataset included 4 long time series collected by
David et al. [42] and Caporaso et al. [41]. To reduce the
number of OTUs to model and remove OTUs not
detectable in many samples, the original OTU tables
[43] were filtered to keep only top OTUs based on
prevalence (> 10 reads in most of the samples). In total,
26 and 22 OTUs were left for samples from David et al.
and Caporaso et al., respectively. In order to assess the
robustness of the inferred network, BEEM was run with
30 different seeds, and edges with confidence score sij ≤
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1 in more than 50% of the networks were kept. The final
biomass was obtained by taking the geometric mean
across all 30 runs (Additional file 2).

Growth curve data
Seven different bacterial species were separately inocu-
lated into triplicate wells of a Bioscreen honeycomb mi-
croplate containing brain heart infusion (BHI) broth.
Absorbance values were measured at 600 nm (OD600)
every 20 min for 48 h for the microplate incubated in
Bioscreen C at 37 °C with continuous shaking at high
amplitude and normal speed. The OD600 values for the
lag and stationary phases were removed, resulting in 10
time points for each species (Additional file 3).

Metrics for evaluation
The following metrics were used for evaluating inference
algorithms:

– Median relative error (MRE) for estimates θ̂ when

the true values are θ: medianθi≠0 j θ̂i−θi
θi

j.
– Area under the receiver operating characteristic

curve (AUC-ROC) for the inferred microbial
interactions. Confidence scores from BEEM were
used to rank predicted interactions and to compute
the AUC-ROC value.

MDSINE and LIMITS
The two algorithmic settings in MDSINE, BLASSO, and
Bayesian variable selection (BVS) were both run with
and without the spline fitting option (other parameters
were kept at default values). LIMITS (implemented in
the R package seqtime_0.1.1 [44]) was run with default
parameters. To compute AUC-ROC values, Bayesian
factors were used to rank the interactions for BVS, while
the absolute values of parameters were used for BLASSO
and LIMITS.

Additional files

Additional file 1: Supplementary Figure 1: Noise in experimentally
determined biomass severely distorts gLVM parameter estimation.
Supplementary Figure 2: The impact of noise on the performance of
different gLVM parameter estimation algorithms is similarly captured with
other evaluation metrics as well. Supplementary Figure 3: Relative
abundances observed for the most abundant species in 840 normal stool
metagenomic samples from Pasolli et al. Supplementary Figure 4:
Boxplots of relative error in BEEM estimated parameters from data with
different number of species. Each box represents 30 independent
simulations. Supplementary Figure 5: BEEM effectively controls for false
positive interactions in a synthetic community with no interactions.
Supplementary Figure 6: Scatter plot for predicted growth rates from
BEEM versus growth rates reported in the AGORA database based on
genome-scale. metabolic models. Supplementary Figure 7: BEEM
estimated biomass and interaction networks from the two shorter gut
microbial longitudinal profiles from David et al and Caporaso et al.
Supplementary Figure 8: Changes in calcium intake for the preceding

day in relation to BEEM-estimated biomass for subject DA’s gut micro-
biome. Supplementary Figure 9: Scatter plots with fitted linear regres-
sion lines between the two hub OTUs and the estimated biomass of M3’s
gut microbiome. Supplementary Figure 10: Scatter plot with fitted
linear regression line between the out- and in-degree of the OTU versus
its mean relative abundance on log scale. Supplementary Figure 11:
Core species of gut microbiome are often not among the top abundant
species. (PDF 4735 kb)

Additional file 2: GLVM parameter estimates for the gut microbiomes
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