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Abstract

The search for effective combination therapies for cancer has
focused heavily on synergistic combinations because they exhibit
enhanced therapeutic efficacy at lower doses. Although synergism
is intuitively attractive, therapeutic success often depends on
whether drug resistance develops. The impact of synergistic com-
binations (vs. antagonistic or additive combinations) on the
process of drug-resistance evolution has not been investigated.
In this study, we use a simplified computational model of cancer
cell numbers in a population of drug-sensitive, singly-resistant,
and fully-resistant cells to simulate the dynamics of resistance
evolution in the presence of two-drug combinations. When we
compared combination therapies administered at the same com-
bination of effective doses, simulations showed synergistic com-
binations most effective at delaying onset of resistance. Paradox-
ically, when the therapies were compared using dose combina-
tions with equal initial efficacy, antagonistic combinations were
most successful at suppressing expansion of resistant subclones.
These findings suggest that, although synergistic combinations

could suppress resistance through early decimation of cell num-
bers (making them "proefficacy" strategies), they are inherently
fragile toward the development of single resistance. In contrast,
antagonistic combinations suppressed the clonal expansion of
singly-resistant cells, making them "antiresistance" strategies. The
distinction between synergism and antagonism was intrinsically
connected to the distinction between offensive and defensive
strategies, where offensive strategies inflicted early casualties and
defensive strategies established protection against anticipated
future threats. Our findings question the exclusive focus on
synergistic combinations and motivate further consideration of
nonsynergistic combinations for cancer therapy.

Significance: Computational simulations show that if dif-
ferent combination therapies have similar initial efficacy in
cancers, then nonsynergistic drug combinations are more
likely than synergistic drug combinations to provide a long-
term defense against the evolution of therapeutic resistance.
Cancer Res; 78(9); 2419–31. �2018 AACR.

Introduction
Modern cancer therapeutics have excellent initial efficacy, but

resistance often develops in a span of months. Investigating
combination therapy for combating cancer resistance is currently
of great interest in the clinical setting (1, 2), at the bench (3, 4),
and in computational modeling (5–9). The combined effect of
two drugs can be categorized as synergistic, additive, or antago-
nistic, depending on whether it is greater than, equal to, or less
than the sum of the drugs' individual effects (Fig. 1A; ref. 10).
As synergism by definition has the greatest potency relative
to total dose, and as toxicity often increases monotonically
with dose, much focus has been given to finding potent
synergistic combinations. However, combination toxicity is com-
plex (11–13), and the side effects of multidrug treatments remain
speculative. Antagonism is sometimes misconstrued as an "anti-
dote" effect, where one drug cancels out the efficacy of another
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Major Findings
We characterize the theoretical circumstances under which

additive, synergistic, or antagonistic combination therapies
would suppress evolution of resistance. Antagonistic therapies
minimize the competitive advantage of cells that develop
single-drug resistance, and thus offer superior performance
in delaying resistance, for cases where the dosing limits allow
sufficient efficacy. Conversely, synergistic therapies can delay
the evolution of resistance if they are sufficiently effective to
decimate na€�ve cancer cells faster than resistant cells can arise.
Finally, we use the inherent symmetry between therapeutic
efficacy and evolutionary fitness to explain why synergism
is a "proefficacy" strategy, whereas antagonism is an "anti-
resistance" strategy.
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Quick Guide to Equations and Assumptions

A. Simulation of cancer evolution in the presence of combination therapy
Major assumptions:

* Tumor cells are treated with synergistic, additive, or antagonistic drug combinations such that the difference in therapy affects
the proliferation probability (PPi) and/or death rate (ai);

* The population heterogeneity is categorized into four subpopulations: fully-sensitive (SS), resistant to drug 1 (RS), resistant
to drug 2 (SR), or doubly-resistant (RR); we neglect heterogeneity within each subpopulation;

* Mechanisms of drug resistance are independent for each drug; a fully-sensitive cell cannot become resistant to both drugs
without undergoing at least two discrete alteration events;

* The number of tumor cells in each subpopulation grows or shrinks over time according to an exponential model.

The model tracks Ni;t , the number of cells over time in each of the sensitive or resistant subpopulations, by simulating
evolutionary growth dynamics. The evolutionary dynamics are described by the following stochastic Poisson process (Po) of
proliferation, death, and rare phenotype alteration events:

Proliferation and Death: N�
i;t ¼ PoðNi;tð1þ prolifkiÞð1� deathkiÞÞ

Alteration: Ni;tþ1 ¼ N�
i;t �

P
j„i Mi!j;t þ

P
j„i Mj!i;t ;

where

prolifki ¼ p PPi
deathki ¼ ab þ ai

Mi!j;t ¼ Po mNi;t
� �

; i; j ¼ SS; RS; SR; or RR
MSS!RR;t ¼ MRR!SS;t ¼ 0:

ðAÞ

Each term in Eq. A is a Poisson random number with mean specified in the parentheses. Phenotype alterations can occur in
both forward and reverse directions, and direct transitions between SS and RR are disallowed.

Parameters:Ni;t is the number of cells in subpopulation i at time t, N�
i;t is the intermediate number of cells in subpopulation i

at time t before cells undergo phenotype alterations, prolifki is the effective proliferation rate, deathki is the effective death
rate, Mi!j;t is the random number of cells of subpopulation i that transforms into cell type j at time t, p is the proliferation rate
of all subpopulations when untreated, PPi is the proliferation probability of subpopulation i, ab is the basal (natural) apoptosis
rate, ai is the drug-induced apoptosis rate of subpopulation i, and m is the phenotype alteration rate.

B. The effect of combination therapy
Major assumptions:

* Drug interaction is defined following Loewe's additivity model (14);
* Each drug combination has a constant potency ratio (15).

We use Greco and colleagues' (16) response surface model for two-drug combinations, as a basis to quantify the effect of
combination therapy. Assuming a constant potency ratio R, we define D1 as the equivalent dose (17) of drug 1 with the same
magnitude of effect as the dose combination (d1, d2):

D1;i ¼ S1;id1 þ S2;id2Rþ aS1;iS2;i
d1d2
ED50;2

; where R ¼ d1
d2

: ðBÞ

ED50;y is the median effective dose of drug y (the dose of drug y that affects 50% of the population). Resistance is defined as
the dose sensitivity (denoted by Sy;i, in %) of subpopulation i to the dose of drug y. The interaction parameter a in the
Greco model describes synergism if a > 0, additivity if a ¼ 0, and antagonism if a < 0. As different subpopulations sense
different fractions of doses d1 and d2, the equivalent dose of drug 1 that is effectively sensed by each subpopulation is denoted
by D1;i, where i can be SS, RS, SR, or RR. From the equivalent dose calculated in Eq. B, we can calculate drug effect from:

Ei ¼ D1;i

ED50;1 þ D1;i
ðCÞ
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(a phenomenon called super-antagonism). Super-antagonism is
counter-productive, but antagonism is not; "less-than-additive"
merely implies that the second drug gives smaller additional
benefit than in the additive case, but is still beneficial. In
the field of infectious diseases, work by Kishony and colleagues
(18–21) discovered that antagonistic antibiotic combinations
could delay the development of bacterial resistance. Can this
concept be applied to cancer (22) as a strategy for delaying
resistance evolution?

Early work by Nowell (23) framed the development of cancer
drug resistance as a process of mutation and evolutionary
selection. Theoretical simulations of the Darwinian dynamics
of drug-sensitive and -resistant subclones in heterogeneous
cancers have described how evolutionary trade-offs (24, 25),
aggregation effects (26), variable cell densities (26–28), or spatial
interactions (29) can create differential selective pressures among
subclones and influence tumor evolution in response to therapy.
These insights from mathematical oncology have inspired the
design of "evolutionarily-enlightened therapies" (26), which
consider factors such as future states of resistance (6, 30), evolu-
tionary trade-offs (31), and temporal subclone vulnerabilities
(32), and predict optimal scheduling to guide clinical studies
(33–35). Such models have also been used to study combination
therapies for cancer (5–9), but more theoretical evolution work is
needed to understand the long-term impact of synergistic (vs.
nonsynergistic) therapy. A combination has more efficacy than
monotherapy due to the simultaneous actions of both drugs.
However, if some cells develop resistance to one drug, they will
escapenotonly the effect of theonedrug,but also its enhancement/
masking of the second drug. Hence, we ask how the efficacies of

different combinationswould be vulnerable to the development of
single-drug resistance.

In this work, we investigate the theoretical effect of two-drug
combination therapies on the evolutionary dynamics of resistance
in a tumor cell population. We ask how Kishony's discoveries
about the risk of synergistic combinations during antimicrobial
therapy might apply to cancer. As there are many types of cancer
and anticancer treatments, we abstracted the broad landscape
using binary resistance (5–9) to define four subpopulations of
cells: fully-sensitive (SS), resistant to drug 1 (RS), resistant to drug 2
(SR), and doubly-resistant (RR). We simulated the number of cells
over time using a simple nonspatial model of cellular alteration
and proliferation. The fitness of each phenotype is quantified by
adapting the concept of dose equivalence (14, 17) to Greco and
colleagues' (16) response surface model for two-drug combina-
tions. We establish two comparison methods to construct a fair
comparison between different classes of treatments: the Constant-
Dose Method uses dose as its basis of comparison, whereas the
Constant-EfficacyMethod uses efficacy on fully-sensitive cells as its
basis of comparison. Our findings may provide a conceptual
framework to guide future experiments in specific cancer systems.

Materials and Methods
Evolutionary tumor cell population model

We developed a stochastic computational model with the
following features: a simple exponential process representing
tumor growth; drug-dependent cell fitness parameters represent-
ing cellular effects of treatment; and stochastic introduction
of resistance phenotypes, based on the preliminary model in

Ei can be implemented as either the normalized reduction in proliferation probability, or the normalized drug-induced
apoptosis rate, and can be used to parameterize the strength of drug effect in proliferation and/or apoptosis.

The absolute parameter values for proliferation probability, PPi, and drug-induced apoptosis rate, ai, can be calculated by
multiplying the normalized effect by modulating parameters for proliferation, PPc, and apoptosis, ac, as follows:

PPi ¼ 1� PPc Ei; and=or ai ¼ ac Ei; where ac; PPc 2 ½0; 1�: ðDÞ
Parameters: dy is the dose of drug y, ED50;y is the 50% effective dose of drug y, a is the interaction parameter of drug
combination in the Greco model, R is the potency ratio constant, D1;i is the equivalent dose of drug 1 sensed by subpopulation
i that has the same magnitude of effect as the combined effect of the (d1, d2) dose pair, Ei is the normalized drug effect
on subpopulation i from treatment, PPc is the scaling factor for proliferation effect, and ac is the scaling factor for apoptotic
effect.

C. The time until double resistance arises, TRR

We derive an analytical approximation for the probability that RR cells will arise at time t (see Supplementary Text S4.1,
Supplementary Equation S16 for the full equation). Assuming the two drugs are delivered symmetrically at the same effective
dose, the probability is given by:

P TRR > tð Þ � exp �r 1� kRSþSRð Þt
1�kRSþSR

� 1� kSSð Þt
1�kSS

� �h i
� exp �m

1� kRSþSRð Þtþ1

1�kRSþSR
nRSþSR;0

h i
;

where r ¼ 2m2

kRSþSR�kSS
NSS;0

ki ¼ 1þprolifki
� �

1�deathki
� �

ðEÞ

Parameters: TRR is the time for doubly-resistant RR cells to appear, kRSþSR is the net growth rate of singly-resistant
subpopulations RS and SR collectively, kSS is the net growth rate of sensitive SS subpopulation, nSS;0 is the number of SS
cells at time 0, and nRSþSR;0 is the number of RS and SR cells collectively at time 0.

Evolution of Cancer Resistance under Combination Therapy
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ref. 7. These features were implemented using a time-step
simulation of proliferation, death, and phenotype alteration.

Evolutionary changes. Between the extremes of full sensitivity
and double resistance, certain types of partial resistance during
combination therapy are anticipated to occur, especially single-
drug resistance (36). Hence, we simulated the tumor dynamics of
four subpopulations changing independently over time: cells that
are sensitive to both drugs (SS), resistant to drug 1 (RS), resistant
to drug 2 (SR), and resistant to both drugs (RR). This categori-
zation followed the approach of Coldman and Goldie (9),
which has also been adapted by others (6, 37). Each subpopu-
lation represents a phenotype class of cells thatmay be genetically
ormetabolically diverse, but categorized for the presence/absence
of resistance. Instead of tracking the birth and death of individual
cells (5, 8, 9, 38), our model tracked the growth and death of the
subpopulations (6), each following exponential dynamics. Expo-
nential growth and exponential decay provide a first-order
approximation of observed population sizes according to empir-
ical studies of solid and liquid tumors (39).

At each time step, each cell has a small probability of switching
into a different subpopulation, according to a Markov transition
model (Fig. 1B, "Alteration phase"). Sensitive cells could acquire
resistance to any one drug; subsequently, singly-resistant cells
could acquire resistance to the second drug. Hence, a fully-
sensitive cell would have to acquire two independent alterations
to become doubly-resistant, making this model incapable of
describing cases where resistance opportunities are nonindepen-
dent. We permitted state transitions to be bidirectional (details in
Supplementary Text S1), assuming all alterations to be indepen-
dent. We set the alteration rate m to be a classically cited rate of
human gene mutation, 10�6 (40), bearing in mind the complex-
ities not covered, such as nonmutational alterations (e.g., epige-
netics), cancers with orders-of-magnitude higher/lower mutation
rates (41), and mutations in loci with dominant, recessive, or
mutator genes (38).

Cell fitness. We abstracted cell fitness as two holistic parameters,
proliferation and apoptosis, rather than parameterizing molecu-

lar mechanisms of fitness (42, 43). The proliferation probability
of subpopulation i, denoted PPi, signifies the proliferative poten-
tial of cells in the subpopulation under the given therapeutic
condition. When exposed to treatment, PPi decreases from 1 (full
proliferative capacity, e.g., untreated cells) to any fraction or 0
(nonproliferative). Meanwhile, the apoptosis potential of sub-
population i was represented by the sum of the cell's basal
apoptosis rate, ab, and the drug-induced apoptosis rate, ai. We
excluded trivial trials where cancer always decreased or always
increased regardless of treatment, by focusing on cases where SS
shrank and RR grew under treatment.

Simulation model.Growth and death were simulated using a cycle
of proliferation, death, and phenotype alteration (Fig. 1B; Eq. A).
Although resistance can sometimes be accompanied by a pheno-
typic cost (24), it can also be accompanied by fitness advantages
such as dedifferentiation and increased aggressiveness (44). Our
model assumed that resistance conferred neither fitness cost nor
advantage, meaning that the subpopulations had uniform pro-
liferation rate p and basal apoptosis rate ab without treatment.
During treatment, the proliferation rate would be scaled down by
each subpopulation's proliferation probability PPi, conferring
differential fitness across the subpopulations, summarized in the
effective proliferation rate prolifki and effective apoptosis rate
deathki (Eq. A). Our main simulations started with 109SS cells
(representing a minimum size for detection; ref. 45) and termi-
nated when tumor size reached zero (representing eradication) or
1012 cells (representing a lethal tumor burden; ref. 45). Simula-
tions with pre-existing resistance in the starting population are
also considered. The Supplementary MATLAB file provides the
simulation code.

Drug-effect parameters
Anticancer therapies can be antiproliferative, proapoptotic, or

both (46, 47).Ourmodel employed twodrug-effect parameters to
quantify these effects: reduction in proliferation probability PPi,
and drug-induced apoptosis rate ai.

A central data structure of the method is the table of fit-
ness parameters for the different subpopulations, illustrated

Figure 1.

Modeling framework. A, Isobologram showing lines of equal efficacy (isoboles) for additive, synergistic, and antagonistic two-drug combinations, based on
Loewe's additivity model. Isobole is defined as the curve of dose combination points having equal efficacy. The x- and y-intercepts represent the single
dose of drug 1 only, or drug 2 only, that will generate equal efficacy, and all points on the isobole connecting the two intercepts also have the same
efficacy. Drugs are noninteracting if their combined effect lies on the linear additive isobole (solid line). Greco's interaction parameter a ¼ 0 signifies
additivity, a < 0 signifies antagonism, and a > 0 signifies synergism. B, Flowchart of the evolutionary tumor cell population model, including "Proliferation
and Death phase" to change the cell numbers in each subgroup, "Alteration phase" to allow cells to change subgroup membership, as well as a test for
termination. The "Alteration phase" box shows the state transition model for phenotype alterations, where the four states represent four subpopulations:
fully-sensitive (SS), resistant to drug 1 (RS), resistant to drug 2 (SR), and doubly-resistant (RR). State transitions are bidirectional and independent,
with uniform probability m ¼ 10�6. Simulation begins with 109SS cells and terminates when cell numbers reach 1012 or zero.
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in Table 1 using the fitness parameter PPi. Under monotherapy
with drug 1, the proliferation probabilities of cells resistant to
drug 1 (PPRS and PPRR) remain approximately unchanged,
whereas PPSS and PPSR decline to x < 1. Conversely, under
drug 2, PPSR and PPRR are approximately unchanged, whereas
PPSS and PPRS decrease to y < 1. When both drugs are given in
combination, the combined effect is less straightforward to
determine, contingent upon the type of drug interaction.

To generalize the parameterization of proliferation and apo-
ptosis beyond specific cases, instead of using experimental data
(6, 8, 30), we calculated the theoretical combination effect using a
method based on the response surface model by Greco and
colleagues (16). We applied the concept of "dose equivalence"
(ref. 17; assumed in Loewe's additivity model, ref. 14) to define
the dose of one drug that generates an effect equivalent to a
combination (Eq. B, derivation in Supplementary Text S2). Gre-
co's model designates an interaction parameter a to denote the
strength of interaction between a combination, where a positive,
zero, or negative a signifies synergism, additivity, or antagonism,
respectively. For flexibility in defining whether anticancer drugs
target proliferation or survival, our model introduced two mod-
ulating parameters: PPc for describing the maximum effect on
proliferation, and ac for describing the maximum effect on apo-
ptosis (Eqs. C andD). A larger PPc or ac indicates a greater effect on
proliferation or apoptosis, respectively. For ourmain simulations,
we simulated both effects at once, assuming PPc ¼ 1 and
ac �0:254. (Proliferation-specific or apoptosis-specific effects
are shown in Supplementary Text S3 and Supplementary Fig. S1.)

Our model assumed resistance to be a binary effect, defined as
the ability to "ignore" 90%of the dose (e.g., S1;RS ¼ 10% in Eq. B).
This definition is an abstract simplification for any molecular
mechanism of resistance, simply lowering the dose–response
curve. Binary resistance is a simplified discretization of actual
resistance mechanisms that are often graded (e.g., expression of
drug-efflux pumps; ref. 48), a promising topic for future
modeling.

Constant-Dose Method and Constant-Efficacy Method
In combination therapy, determining maximum tolerable

doses (MTD) can be complex. Evidence suggests that combi-
nation toxicity can be "nonadditive" relative to the individual
toxicities; drugs with overlapping toxicity may cause side
effects at doses lower than the MTD of either drug (11),
whereas antagonistic combinations sometimes generate little
increase in adverse events compared with monotherapy (12).
The complexity of combination toxicities (and MTD) creates
uncertainty for establishing a fair dosing method for compar-
ing alternative combination therapies.

Therefore, we defined two complementary methods of com-
parison: the Constant-Dose Method and the Constant-Efficacy
Method. The Constant-Dose Method defines fairness using
dose as the equalizer—all combinations were dosed using the

same combination of effective doses, regardless of synergism or
antagonism. Effective dose (EDX) refers to the dose of a single
drug that affects X% of the population. Hence, two drugs may
be delivered at different absolute concentrations yet the same
effective dose (e.g., if drug X is delivered at ED50,X ¼ 1 mg/kg,
while drug Y is delivered at ED50,Y ¼ 0.5 mg/kg). Under this
method, efficacy increases from antagonistic, additive, to
synergistic.

The Constant-Efficacy Method defined fairness by using com-
bined efficacy as the organizing equalizer. Doses were set so that
all combination treatments had equal efficacy toward the fully-
sensitive tumor bulk (SS cells), including the possibility that the
administered EDX differs across combinations. This method
assumes that antagonistic drugs can be delivered at doses higher
than synergistic drugswithout violating safety limits (for example,
if toxicity mirrors efficacy).

As comparative measures for the effectiveness of resistance
suppression, we evaluated how different combination therapies
affected Tlethal (time to reach 1012 cells) and TRR (time until
doubly-resistant RR cells arise). The simulation parameters
were calculated with the described approach for the con-
stant-dose and constant-efficacy comparisons (Supplementary
Fig. S2), where each combination was dosed symmetrically
(i.e., with the same EDX).

Approximation of TRR (the time until double resistance
arises)

To generalize how synergism and antagonism affect evolu-
tion, we derived an analytical approximation of TRR (Eq. S16
of Supplementary Text S4.1). The full derivation allows arbi-
trary level of pre-existing resistance and arbitrary dosing. If we
set dosing to be symmetric (Eq. E) and set pre-existing resis-
tance to zero, then the full analytical approximation (Equation
S16) can be simplified as follows. The probability that double
resistance will arise (for the first time) at generation t is

P TRR ¼ tð Þ � exp �r 1� kRSþSRð Þt�1

1�kRSþSR
� 1� kSSð Þt�1

1�kSS

� �h i
1� e�r kRSþSRð Þt�1� kSSð Þt�1ð Þ� �

where r ¼ 2m2

kRSþSR�kSS
NSS;0

ki ¼ 1þprolifki
� �

1�deathki
� �

Here, kRSþ SR is the net growth rate of singly-resistant subpo-
pulations RS and SR collectively, kSS is the net growth rate of
subpopulation SS,m is the alteration rate, and nSS;0 is the number
of sensitive SS cells at time 0. In interpreting the approximation,
we focus on kRSþ SR > 1, because then some singly-resistant cells
will continue to exist, permitting the question of how long until at
least one transforms into RR. Note that there are critical points
when kSS or kRSþ SR approach 1 (see the denominator of the
exponent).

Table 1. Table of fitness parameters, illustrated here by proliferation probabilityPPi , where i references the four subpopulations: fully-sensitive (SS), resistant to drug
1 (RS), resistant to drug 2 (SR), and doubly-resistant (RR)

PPi Untreated Drug 1 Drug 2 Drugs 1 and 2 Synergistic example Antagonistic example

PPSS 1 x y ?? 0.35 0.56
PPRS 1 1 y y y ¼ 0.70 y ¼ 0.70
PPSR 1 x 1 x x ¼ 0.73 x ¼ 0.73
PPRR 1 1 1 1 1.00 1.00

NOTE: x and y are arbitrary variables between 0 and 1. Indicated values illustrate conceptual trends and not exact fitness.
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Results
Dynamics of tumor evolutionunder theConstant-DoseMethod
and the Constant-Efficacy Method

Monte Carlo simulations (n ¼ 10,000) were run for syn-
ergistic, additive, and antagonistic treatments (using additive
treatment as control) according to the Constant-Dose Method,
dosing the combinations at a constant combination of EDX.
Figure 2 shows five individual simulations. Looking at the
additive control, tumor response exhibits three stages. Firstly,
the SS subpopulation (indigo) goes down, causing the total
tumor mass (yellow) to decline ("tumor regression stage").
Next, the singly-resistant subpopulations SR (red) and RS

(magenta, eclipsed by red) arise and proliferate ("resistance
evolution stage"). Finally, doubly-resistant cells (cyan) arise
at approximately 27.3 generations, eventually causing cat-
astrophically fast growth ("tumor relapse stage"). This
three-stage tumor response is common to many of our out-
comes. The same high-level conclusion was also achieved in
ref. 6.

In the constant-dose simulations, synergism caused a steeper
initial decrease of the SS curve compared with antagonism
(Fig. 2A). Because SS cells comprise the majority of the popula-
tion, the total tumor mass shrank more rapidly in response to
treatment. Meanwhile, antagonistic combinations had weaker

Figure 2.

The dynamics of resistance evolution under the Constant-Dose Method and the Constant-Efficacy Method. Simulated growth dynamics of the subpopulations
under two-drug combination therapies, from Monte Carlo simulations (n ¼ 10,000). Indigo, SS (sensitive to both drugs); magenta, RS (resistant to
drug 1); red, SR (resistant to drug 2, eclipsing the RS curves); cyan, RR (resistant to both drugs); and yellow, the total population. Red numbers in the "Time"
axis indicate the time until double resistance emerges, TRR . In the simulation parameters at right, an asterisk indicates which parameter is used for
defining constant dose or constant efficacy. All simulations can be compared against the additive case, as a control simulation (middle row on the right). Each
pair of drugs is delivered at symmetric effective doses (EDX), meaning EDX;1 ¼ EDX;2 . A, Cell numbers over time, simulated according to the parameters at
right. Antagonistic and synergistic combination therapies are compared according to the Constant-Dose Method, where all drug pairs have the same
combinations of effective doses. B, Repeated simulations except using the Constant-Efficacy Method, where all drug pairs have the same combined effect on
sensitive cells, ESS ¼ 0:69, while allowing effective doses to vary (see Supplementary Fig. S2C; parameters: ED50;1 ¼ 10, ED50;2 ¼ 10, p ¼ 0.95, ab ¼ 0.12,
PPc ¼ 1, ac ¼ 0.254.)
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efficacy against the SS subpopulation and decreased its size
slowly. Consequently, there were more cells per time-step with
opportunity to transition toward resistance (comparedwith in the
synergistic case), making RR cells emerge sooner. Therefore, not
only are antagonistic combinations less effective against the na€�ve
cells, but by letting a large tumor population persist, they also
allow resistance to arise more quickly. Once the untreatable RR
cells appeared, the clonal expansion of these highly fit cells
followed, as seen in the steep slope of the RR curve. RR cells soon
made up most of the total population and expanded the popu-
lation size.

Simulations were again run for synergistic and antagonistic
treatments according to the Constant-Efficacy Method, dosing
each drug pair with symmetric EDX to achieve ESS of 0.69 (the
same as in the additive control). Interestingly, these results
showed that as treatment became more antagonistic, TRR and
Tlethalwere prolonged, giving better outcome. Because all com-
binations have equal efficacy toward SS cells, the simulations
showed similar initial responsiveness, meaning the same down-
ward slopes of the SS curves in Fig. 2B. However, the singly-
resistant subpopulations, SR and RS, quickly went up in the
synergistic case, whereas this increase was not as strong in the
antagonistic case. Because the singly-resistant subpopulations
expanded quickly in the synergistic case, tumor relapse occurred
earlier than in the antagonistic case (after�75 generations in the
synergistic plot vs. after �90 generations in the antagonistic
plot). The earlier expansion of singly-resistant subpopulations,
which are one step away from RR, promoted the emergence of
doubly-resistant cells. The fast increase of the RR curve then
accelerated Tlethal.

Stochastic simulations and analytical approximations show the
merits of synergism under the Constant-Dose Method, and
antagonism under the Constant-Efficacy Method

To test whether the above observations were consistent, we
repeated the stochastic simulations (n ¼ 10,000) for a range of
a values, according to the Constant-Dose and the Constant-

Efficacy Methods. To confirm the general nature of the findings,
we also used the analytical equation for TRR (see Materials
and Methods). Figure 3A–E validates the applicability of our
analytical equation, showing that the analytical approxima-
tion of TRR agrees closely with the results from Monte Carlo
simulations.

Stochastic simulations showed that under the Constant-Dose
Method, increasing synergism prolongs TRR and Tlethal (Fig. 4A).
This advantage of synergism was also shown by the analytical
approximation of TRR, by varying kSS while fixing kRSþSR. Low-
ering kSS means increasing synergism, which shifts the proba-
bility distribution toward higher TRR (i.e., better anticancer
outcomes; Fig. 4B). In contrast, stochastic simulations showed
that under the Constant-Efficacy Method, TRR and Tlethal
increased as the treatment became more antagonistic (Fig.
4C). This finding was confirmed by the analytical equation for
TRR, by varying kRSþSR while holding kSS fixed. Lowering kRSþSR

means increasing the antagonism of the combination therapy,
which broadens the probability distribution of TRR, peaking at
significantly higher TRR (Fig. 4D).

Pre-existing resistance
Given the prevalence of pre-existing resistance in many

cancers, we asked if the merits of synergism in constant-dose
scenarios and antagonism in constant-efficacy scenarios would
change if some singly-resistant cells were present in the starting
population. When we added some pre-existing singly-resistant
cells, the relative merits of synergism or antagonism were
unchanged (Fig. 5), although the absolute times to RR (TRR)
were globally shorter. As the number of pre-existing singly-
resistant cells increased, there was a threshold above which the
choice of synergism or antagonism made little difference,
because RR cells would quickly evolve and drive tumor relapse.
This result was not limited to cases where RS and SR cells were
present in equal numbers, as shown by randomly varying the
levels of pre-existing singly-resistant RS and SR cells (Supple-
mentary Fig. S3).

Figure 3.

Histograms showing TRR; the time
until double resistance emerges. For
each frame, the histogram of 10,000
stochastic simulations (gray bars) is
superimposed with the probability
distribution curve of TRR generated
from the analytical approximation. The
parameters are specified in the tables
in Fig. 2 for the additive control (A),
the antagonistic example (B), and the
synergistic example (C) of the
Constant-Dose Method in Fig. 2A, and
the antagonistic example (D) and the
synergistic example (E) of the
Constant-Efficacy Method in Fig. 2B.
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Discussion
In this work, we simulated a simplified cancer cell population

to understand how different drug interaction types (i.e., syner-
gistic, additive, antagonistic) affected the long-term evolution of
resistance. Wemodeled the growth trends of four cell subpopula-
tions (fully-sensitive, two types of singly-resistant, and doubly-
resistant) responding to two-drug combination treatments, and
we performed side-by-side comparisons of synergistic versus
nonsynergistic therapies, according to the Constant-Dose or the
Constant-Efficacy Method. Most simulations displayed three
stages of tumor response: regression, resistance evolution, and
relapse.

Constant-dose and constant-efficacy comparisons
The two comparison methods gave opposite results, reflect-

ing that these paradigms are opposite extremes of the plausible
dosing spectrum. Under the Constant-Dose Method, synergism
was more effective than antagonism at reducing cell numbers in
the short term, and suppressing the growth of resistant cells in

the long term (Fig. 2A). In contrast, under the Constant-Efficacy
Method, antagonism was better at suppressing the expansion
of resistant cells (Fig. 2B). As previously implied in refs. 5, 6,
8, 9, TRR is a surrogate measure for the evolutionary success of a
combination treatment, because delaying the emergence of
doubly-resistant cells prolongs the time until acquiring a lethal
tumor burden (Fig. 4A and C). Our model, by construction,
gave nearly equal fitness to RR cells regardless of dosing method
(RR cells ignored 90% of any dose). Because the RR subpop-
ulation would grow exponentially after arising, the number of
generations between TRR and Tlethal would be approximately
constant. (Possible exceptions include therapy-failure cases
where both drugs are weak against SS cells, allowing the
expansion of non-RR cells to drive relapse.) Looking at the
analytical approximation for TRR, the definition of success in
the Constant-Dose and Constant-Efficacy Methods becomes
straightforward: by substituting the appropriate kSS and
kRSþSR values, synergism always wins in the constant-dose
scenario, and antagonism always wins in the constant-efficacy
scenario. What this means in practice depends on MTDs, which

Figure 4.

Tlethal and TRR from treatment with different combinations, according to the Constant-Dose Method and the Constant-Efficacy Method. A and C were
obtained by running Monte Carlo simulations with 10,000 experiments for each treatment scenario. A, Under the Constant-Dose Method, increasing a from
antagonistic (a < 0) to synergistic (a>0) prolongs the time to reach a lethal tumor burden, Tlethal (solid line), and the time for RR cells to emerge, TRR
(dashed line). The gray shaded areas indicate the respective SDs of Tlethal and TRR . B, The analytical approximation of TRR under the Constant-Dose Method
agrees with the results in A, because the probability distribution of TRR from the approximation shifts to higher values as treatment becomes more synergistic
(i.e., from blue to red), indicating more time before doubly-resistant cells emerge. C, In contrast, under the Constant-Efficacy Method, decreasing a

from synergistic (a >0) to antagonistic (a < 0) prolongs Tlethal and TRR . D, The analytical approximation of TRR under the Constant-Efficacy Method shows that
the probability distribution of TRR shifts to higher values and becomes more widely spread as treatment becomes more antagonistic (i.e., from red
to blue; parameters: the same as in Fig. 2, except for the a values.)
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are more complex than the one-dimensional spectrum between
Constant-Dose and Constant-Efficacy Methods.

In a constant-dose comparison, synergistic combinations are
superior because they strongly impair the fitness of sensitive
cells. The high efficacy of synergistic combinations enables
rapid immediate killing of sensitive cells, shrinking the tumor
cell population during early-stage treatment. In theory, this
initial success decreases the number of opportunities (and
slows the speed) for resistance to evolve. This result implies
that when a treatment has a significantly better initial efficacy
than its alternative, it may be able to generate a better long-term
outcome, even if this efficacy is achieved via synergism. Mean-
while, the results of the constant-efficacy comparison may seem
counterintuitive, but they can be explained (below) by studying
how synergism and antagonism give differential fitness rewards
to singly-resistant cells, which can be understood by consider-
ing the inverse symmetry between combination efficacy and
evolutionary fitness.

Comparative fitness rewards from synergism and antagonism
The superiority of antagonism under the constant-efficacy

comparison is intrinsic to the definitions of synergism and
antagonism. When synergistic and antagonistic combinations
are compared by dose (e.g., Constant-Dose Method, Fig. 6A),
the increase in efficacy from single-drug to two-drug treatment,
by definition, is larger for synergistic drugs (red bars) than
antagonistic (blue bars). Meanwhile, treatment efficacy, regard-
less of drug mechanisms, is determined by the impairment of
the cancer, which is measured in our model as a decreased
evolutionary fitness. This inverse symmetry between efficacy
and fitness means that the difference in fitness as a result of a
synergistic or antagonistic treatment is also inherent to the
definition of synergism or antagonism—in this constant-dose
case, synergistic treatments decrease fitness more significantly
than antagonistic treatments.

However, the impact of resistance can be abstractly described
as a reduced sensitivity to drug dose, making full sensitivity
resemble a two-drug treatment and single resistance resemble a
single-drug treatment. This means that, as cells develop single
resistance and dose sensitivity decreases, the cells will gain
more fitness under synergistic treatments than under antago-
nistic treatments, implying that synergism intrinsically gives
fitness rewards to singly-resistant cells. This is also evident
when we view resistance as a spectrum. We defined a fitness
function (Fig. 6B) that summarizes the cancer phenotype as a
function of fractional resistance. Plotting fitness versus resis-
tance (an "evolution plot") shows the relative reward from
synergism or antagonism (Dfitness/Dresistance) as cells develop
resistance. Dfitness/Dresistance is intrinsically greater for syner-
gistic than for antagonistic treatments.

Applying this concept to the Constant-Efficacy Method,
which considers an alternative dosing scenario where the com-
binations have equal efficacies toward sensitive wild-type cells
(equal efficacies for Drugs 1þ2, Fig. 6C), the evolution plot
(Fig. 6D) shows that although both treatments give equal
fitness to fully-sensitive cells, synergistic treatments will reward
partial resistance with higher fitness than antagonistic treat-
ments, because of the greater Dfitness/Dresistance of synergism.
To explain this observation, a synergistic combination needs
both drugs working simultaneously for their benefits to ensue.
If either drug is evaded, or if the sensitivity of the cells to the full
drug doses lessens, not only will the single-drug effect dimin-
ish, but the enhancement of efficacy from the combination
effect will also be lost. Because the enhancement of efficacy
from synergism is greater than that from antagonism, syner-
gism will cause a bigger reduction of efficacy when cells develop
resistance, thereby rewarding partial resistance with a much
higher fitness. This makes synergistic strategies more fragile to
the development of partial resistance. Conversely, by not
rewarding partially-resistant cells with much fitness advantage,

Figure 5.

The relative advantages of synergistic or antagonistic therapies in simulations with pre-existing single-drug resistance. Stochastic simulations (10,000
experiments for each scenario) of cancer populations with increasing numbers of pre-existing singly-resistant (RS and SR) cells at the start of treatment. We
define ðTRRÞstrategy to be the number of generations until double resistance arises under a given strategy (synergistic, additive, or antagonistic), and DTRR to

be the difference ðTRRÞsyn � ðTRRÞant. Using the Constant-Dose Method, synergism consistently results in longer TRR than antagonism (i.e., DTRR > 0), and when

using the Constant-Efficacy Method, antagonism consistently results in longer TRR than synergism (i.e., DDTRR < 0). However, the differences between
synergism and antagonism diminish as the number of pre-existing singly-resistant cells increases. In this figure, RS and SR cells are present in equal numbers at
the beginning of the simulation. The synergistic simulation (a ¼ 0.4) is compared with a ¼ �0.4 antagonism for the Constant-Dose Method and a ¼ �0.3 for
the Constant-Efficacy Method. The change in a is to avoid simulations where the cancer is eradicated, without changing the other key parameters. All
other parameters are the same as in Fig. 2.
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antagonism will slow down the expansion of partially-resistant
subclones. The cautionary lesson is that if two combinations
have the same initial efficacy, and if one combination achieves
its efficacy through synergism, then the less synergistic option
would be preferable, because its efficacy would exhibit less
deterioration against a subpopulation with single-drug resis-
tance. Real-world dosing is complex and may lie along a
spectrum between the absolute ideals of constant dose and
constant efficacy. Supplementary Fig. S4 illustrates a potential
hybrid.

Synergism as an offensive strategy and antagonism as a
defensive strategy

The parallel between efficacy and fitness suggests an insight
into the contrast between offensive and defensive strategies to
combat resistance evolution. Defense refers to preparing to
counter anticipated future attacks, such as foreseeable forms of
single-drug resistance or partial resistance. We assert that
synergism is an offensive (proefficacy) strategy, because resis-
tance is suppressed by decimating cancer cells before resis-
tance can emerge. Meanwhile, antagonism is a defensive
(antiresistance) strategy; although it may not be optimally
effective at reducing cell numbers initially, it suppresses sin-
gly-resistant subpopulations by not giving them as much
fitness advantage as synergism might. Our findings illustrate
that, in some cases, treatments that do not yield better initial
response can give a better long-term outcome, because of
their effectiveness in suppressing the evolution of resistance.
Therefore, the idea of a defensive strategy is aligned with
multiple lines of research (7, 25, 32, 49) that advocate a shift
in therapeutic approach, toward "treat-to-stabilize" versus
"treat-to-eradicate" (49).

The qualitative difference in how combinations reward
different resistance phenotypes is independent of the mathe-
matical formalism for defining synergism and antagonism, but
it is affected strongly by the formalism for MTD. Dosing moves
the evolution curves up and down along the fitness axis, while
not changing the curve shape significantly. Therefore, the
advisability of the proefficacy or antiresistance strategy
depends on the dosing of the comparisons. Nonetheless, the
allowable doses of different combinations are highly variable
because dosing is limited by the toxicity of the combination
(not the sum of the individual toxicities). In addition, the effect
of a combination may switch between synergism and antag-
onism depending on dose (16, 50), context (50), or tumor
progression. Although analyses over a variety of parameters
showed that our conclusions were robust (Fig. 5; Supplemen-
tary Figs. S1, S3, S5, and S6), the variability of dosing strategies
and the heterogeneity of cancers introduce uncertainty, and it
remains to be determined what combination will be superior
for treating a particular instance. One might be tempted to
interpret our results as recommending synergistic drugs for
na€�ve tumors and nonsynergistic drugs for tumors with partial
resistance or fast mutation, but empirical testing would be
needed to determine which strategy could be applied for each
specific case.

Caveats
There are several caveats for interpreting our results. Firstly,

the state-transition probability is independent for each cell, so
the time required to create the first doubly-resistant cell
depends powerfully on the number of singly-resistant cells.
In reality, some forms of resistance might not arise in propor-
tion to the number of precursor cells involved (e.g., cancer-

Figure 6.

Synergistic therapy as a "proefficacy"
strategy and antagonistic therapy as
an "antiresistance" strategy. All plots
were computed using the parameters
in Supplementary Table S1, with
fitness defined as 1� Ei (efficacy) in
equations B and C, and resistance
defined by symmetrically increasing
S1;i and S2;i from 0% to 100%. Drug
effect plots are bar charts showing the
efficacy of treatments delivered as
single agents or in combination, and
evolution plots show the fitness of the
cancer cells over a spectrum of
drug-resistance levels. The drug effect
plot (A) and the evolution plot (B) for
the Constant-Dose Method, and the
drug effect plot (C) and the evolution
plot (D) for the Constant-Efficacy
Method. By this analysis, synergism is
a "proefficacy" strategy because it
hasgreater-than-additive efficacy, but
it suffers from large Dfitness/
Dresistance in the evolution plot,
meaning that synergism rewards cells
that start to develop resistance.
Conversely, antagonism is an "anti-
resistance" strategy because it has
smaller Dfitness/Dresistance, but it
suffers less-than-additive efficacy.
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associated macrophages or fibroblasts). Secondly, the assump-
tion that there are no direct transitions from fully-sensitive
(SS) to doubly-resistant (RR) would be unreasonable for
combinations where resistance to one drug provides some
intrinsic resistance to the other drug (e.g., if the drugs target
the same pathway). Such cases violate our model's indepen-
dence assumption, and regardless how a biological system
might achieve a direct leap from SS to RR, such a transition
would have dire effects on TRR (Supplementary Fig. S7). Our
model also assumes a uniform phenotype-transition rate of
10�6, but mutation rates may vary in vivo (41), and this could
alter the outcome. Future work should model specific resis-
tance mechanisms. In the absence of that, we simulated vary-
ing rates of alteration (Supplementary Fig. S5), which yielded
the following observations: the relative benefits of synergism
and antagonism were consistent across a range of alteration
rates; the benefits of antagonism were asymmetrically better
than the benefits of synergism for slow-evolving tumors; and
the benefits of either strategy were lost in fast-evolving tumors.

Our model simplifies the diversity of resistance mechanisms
by using phenotypic categories for single- or multidrug resis-
tance. This ignores several issues: the presence of hierarchical
heterogeneity (51); the fitness heterogeneity arising from coop-
eration and cheating (29); and the fitness penalties associated
with drug resistance (24). We simulated cases where drug
resistance was associated with a fitness cost (or advantage).
When drug resistance incurred a fitness cost, the relative ben-
efits of synergism under constant dose, and of antagonism
under constant efficacy, were magnified (Supplementary
Fig. S6) in keeping with the slower speed of evolution. Con-
versely, when drug resistance brought a fitness advantage,
evolution was faster and the relative benefits became smaller.
Future work can represent resistance mechanisms for each
subpopulation more explicitly. Our model also neglects spatial
considerations, which can affect the speed of tumor growth,
relapse (28), and accumulation of mutations (29). In addition,
assuming that drugs are uniformly distributed within the
tumor ignores an important spatial effect in which regional
variations in perfusion and drug penetration may create het-
erogeneity in drug concentrations, potentially forming single-
drug "sanctuaries." Single-drug sanctuaries can accelerate
the evolution of multidrug resistance by providing escape sites
for singly-resistant cells (52). Thus, there may be significant
variations in the dynamics of evolution in different tumor
regions.

Toxicity and dosing
Our study has not explicitly accounted for toxicity, but

toxicity is fundamental to our dosing questions. Toxicity
determines whether antagonistic drugs can be administered
with equal efficacy to other combinations, and whether syn-
ergistic drugs can be administered with equal dose to other
combinations, thus defining whether situations resembling
the constant-dose and constant-efficacy simulations are valid.
Note that for combination therapies, the individual doses
are not the sole determinant of toxicity, because combinations
often have "nonadditive" toxicities that are either more or
less severe than the individual toxicities (11, 12). Because
toxicity affects tolerable dose limits, understanding combina-
tion toxicity is the barrier to determining the preferable
treatment strategy.

In prior research, combination toxicity has been addressed
through several approaches. Coldman and Murray (53) used
Bayes' theorem to calculate the probability of a toxic event for
combinations of chemotherapeutics, assuming that toxicity
depends only on the total killing of normal cells. Other studies
(54, 55) have used toxicity constraints in designing optimal
dosing schedules, defining toxicity constraints as the maximum
tolerable duration of a treatment pulse delivered at a particular
dose, based on clinical data. These studies, as well as (6, 30),
found that short pulses of high mono-therapeutic doses could
minimize the probability of resistance without crossing the
toxicity limit. The studies (6, 30) also found that adaptive
switching of treatment yielded better outcomes than prolonged
treatment. Future work should study how pulsed or variable
dosing strategies would affect combination toxicity and resis-
tance evolution, as a means for addressing toxicity limits.
Another unmet need is determining how pharmacokinetic
clearance could affect toxicity.

In summary, our work demonstrates the potential for dif-
ferent combination therapies to combat resistance evolution in
cancer. Overall, synergism provides a proefficacy approach that
can suppress resistance if it is sufficiently efficacious to deci-
mate total cell numbers. Otherwise, synergism becomes a
double-edged sword; the reason synergistic combinations are
attractive (i.e., a steep increment in efficacy when adding a
second drug) creates a dangerously high increment in evolu-
tionary fitness, if some cells develop single-drug resistance.
Meanwhile, antagonism provides an antiresistance approach;
the reason antagonistic treatments have been avoided (i.e., a
poor increase in efficacy when adding a second drug) becomes a
protective measure against future resistance, because partially-
resistant cells would have little fitness advantage over sensitive
cells. The constant-dose experiment suggests that, given the
option of therapies where one has significantly higher initial
efficacy than others, the more efficacious one would give a
better long-term outcome. On the other hand, the constant-
efficacy experiment cautions that if two combinations have
similar efficacy, then the more antagonistic one would provide
better long-term defense against resistance. Our study urges an
open-minded consideration of combinations according to their
empirical long-term impact, rather than presuming that syner-
gism in the initial efficacy would necessarily produce better
long-term outcomes.
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