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Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in developed 

countries [1]. A subset of individuals with NAFLD progress to non-alcoholic steatohepatitis 

(NASH), an advanced form of NAFLD which predisposes individuals to cirrhosis, liver failure and 

hepatocellular carcinoma. The current gold standard for NASH diagnosis and staging is based on 

histological evaluation, which is largely semi-quantitative and subjective. To address the need for 

an automated and objective approach to NASH detection, we combined Raman micro-
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spectroscopy and machine learning techniques to develop a classification model based on a well-

established NASH mouse model, using spectrum pre-processing, biochemical component analysis 

(BCA) and logistic regression. By employing a selected pool of biochemical components, we 

identified biochemical changes specific to NASH and show that the classification model is capable 

of accurately detecting NASH (AUC=0.85–0.87) in mice. The unique biochemical fingerprint 

generated in this study may serve as a useful criterion to be leveraged for further validation in 

clinical samples.
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1. Introduction

As one of the leading causes of chronic liver disease worldwide, non-alcoholic fatty liver 

disease (NAFLD) is estimated to afflict 20–30 % of the general population in Western 

countries [2]. While most patients are histologically categorized to have relatively benign 

simple steatosis, a subset of NAFLD patients eventually progress to non-alcoholic steato-

hepatitis (NASH), histologically characterized by the presence of hepatocellular steatosis [3] 

and necro-inflammatory reactions [4]. In many instances, NASH is an indication of a 

systemic disorder, such as type 2 diabetes, metabolic syndrome or hyperlipidemia [5]. With 

disease progression in patients with advanced NASH, extensive liver fibrosis is associated 

with an increased risk for developing cirrhosis, liver failure, and/or hepatocellular carcinoma 

(HCC) [6].

Clinically, the histopathological evaluation of liver biopsies is currently the gold standard for 

NASH diagnosis. However, significant variation exists amongst pathologists in the definition 

of NASH and an unequivocal agreement has not been reached. Additionally, there is also 
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inter-observer variation in the diagnosis [7]. Besides NASH diagnosis, efforts have also been 

directed towards the development of a NAFLD grading system that would be sensitive to 

underlying changes in the disease process, such as those occurring during the course of 

natural disease progression to NASH or during therapeutic interventions to treat NASH. 

While histological scoring systems that enable the staging of NAFLD have been developed 

[8], their value in routine practice remains to be determined and are therefore, primarily used 

only in treatment trials. In sum, whether for diagnosing NASH or for NAFLD staging, the 

traditional histological approach is fundamentally semi-quantitative, observer-dependent, 

and includes only a very limited set of pathological features.

As many diseases lead to changes in tissue composition, Raman micro-spectroscopy has 

emerged as a promising diagnostic tool in recent years [9], particularly for the diagnosis of 

cancer [10]. Besides being a label-free approach that enables multiplexing, Raman micro-

spectroscopy provides a biochemical map of the tissue of interest that potentially enables the 

identification of spatial-temporal changes in tissue composition. Indeed, several groups have 

reported the use of Raman micro-spectroscopy-based techniques such as coherent Anti-

Stokes Raman scattering and confocal Raman imaging for the detection of NAFLD and 

NASH [11–15]. These label-free approaches enable objective and quantitative measurements 

of lipid accumulation within the liver without the need for exogenous contrast agents. 

However, the intrinsic molecular vibration-based imaging techniques employed in these 

systems are limited to the detection of microvesicular or macro-vesicular steatosis. What has 

not been shown, is whether these techniques can similarly be used to detect spatio-temporal 

changes in other biochemical moieties in the liver during disease progression. Furthermore, 

while it has been shown that these systems are capable of detecting lipid droplets and 

characterizing the response of hepatocytes to metabolic disease, a fully automated model 

that can distinguish NAFLD/NASH tissue from normal tissue has not been developed; such 

a generalized model is needed for an improved understanding of fatty liver pathogenesis.

To address this need for a fully quantitative and observer-independent approach to NASH 

diagnosis (and ultimately NAFLD staging), we combined spontaneous Raman micro-

spectroscopy and machine learning techniques to identify spectral signatures that are 

specific to NASH using the STAM™ NASH mouse model [16], a well-established murine 

model that recapitulates NASH progression in humans [17,18]. Using this approach, we 

report the development of a classification model that may be further leveraged for the 

development of a quantitative and objective scoring system for NASH in patients.

2. Materials and methods

2.1 Animal model and preparation of sample tissue

Liver tissue was obtained from the STAM™ NASH mouse model (Stelic Institute & Co., 

Inc.) (Figure 1). This model is generated by administering a single low dose of 

Streptozotocin at 2-days of age to induce insulin resistance, followed by a high-fat diet from 

4-weeks of age. The entire lifespan for the mice is approximately 16 weeks during which 

steatohepatitis, NASH, fibrosis and HCC is expected to develop progressively over time. In 

this study, 42 STAM™ mice were generated and sacrificed at 6 time points with Raman data 

recorded with 1 section per mice. Among them, 14 were non-NASH (control) group and 28 
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were NASH group according to the NASH score (mathematically adding up of steatosis, 

ballooning and inflammation scores) given from the Supporting Figure 1. Liver tissues from 

both the non-NASH (control) and NASH groups were collected and snap-frozen with liquid 

nitrogen. The tissues were then cryo-sectioned into 20 μm-thick tissue slices and placed on 

quartz coverslips (ALFA43210.KJ, VWR) for Raman imaging. Every consecutive three 

sections were stained with H&E, Oil Red and Sirius Red.

2.2 Evaluation of non–alcoholic steatohepatitis (NASH)

For each sample, histological slides stained separately with H&E, Oil Red and Sirius Red 

were reviewed by experienced pathologists with blind reading to minimize bias. The 

histological criteria employed to detect NASH included the presence of steatosis, 

inflammation and hepatocellular ballooning [7], as previously developed by Brunt et al. [19]. 

Scores for steatosis, inflammation and hepatocellular ballooning were recorded separately 

for subsequent analysis.

2.3 System setup and image acquisition

The Raman spectroscope employed in this study was based on a home-built inverted 

microscope [20]. A frequency-doubled Nd: YAG laser with wavelength of 532 nm 

(Millennia 5sJ, Spectra-physics) was used as the pump source of a CW tunable Ti: sapphire 

laser with wavelength of 785 nm (3900S, Spectra-Physics). The collimated beam was firstly 

filtered by the laser line clean-up filter (BPF, LL01-785-12.5, Semrock) and directed by a 

dichroic mirror (LPD01-785RU-25, Semrock) to the dual-axis galvanometer mirrors 

(CT-6210, Cambridge Technology). Subsequently, the beam size was adjusted by a telescope 

and focused at the sample plane by the water immersion objective lens (Olympus UPLSA-

PO60XWIR 60X/1.20) and the laser power at the sample location was approximately 60 

mW. The XY position was achieved by a micrometer-controlled stage and the z-focus was 

controlled by combining a piezo actuator with a differential micrometer (DRV517, 

Thorlabs). Collected Raman signal was delivered to the imaging spectrograph (HoloSpec f/

1.8i, Kaiser Optical Systems), which was featured by high throughput and low aperture 

ratio. The Raman grating (HSG-785-LF, Kaiser Optical Systems) enabled a spectra shift 

coverage of −34 to 1894 cm−1 and spectra resolution of 2.0 cm−1/pixel. Spectra was 

captured using a TE-cooled CCD. An intensity controlled white LED was used as the 

illumination source for bright field imaging and images were captured using the CMOS 

camera (BCN–B050-U, MightTex). The Labview 8.2 software (National Instruments) 

accompanied with a data acquisition board (PCI-6251, National Instruments) was used to 

control the devices.

To perform tissue sample imaging, two types of data were acquired from the slides. The first 

type was 30×30 pixels’ high-resolution spectral images –one image was acquired from each 

tissue sample and used for image-based analysis. The second type was 10×10 pixels’ low-

resolution spectral images –nine images were acquired from each tissue sample and used for 

spectral – based analysis from wide tissue area and minimize the tissue heterogeneity effect. 

The signal acquisition interval time was 1 second, therefore each 30×30 pixels’ spectral 

image and 10×10 pixels’ spectral image was acquired every 20 min and 2 min, with the 

dimension being 45×45 μm and 15×15 μm, respectively. The spectra of different selected 
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chemicals were acquired when a small amount of chemical powder was put on the quartz 

cover slip (spectra image resolution was set as 3×3 and the signal acquisition integral time 

was 10 s). The nine measurements were taken from the same sample spot and then averaged 

into the spectra of the selected chemicals.

2.4 Spectrum processing and image analysis

The initial spectra were collected over the range of −175 cm−1 to 1843 cm−1. Since the 

signal from the quartz substrate is primarily in the range of 250 cm−1 to 580 cm−1 [21], 

spectra within the range of 600 cm−1 to 1800 cm−1 were specifically selected for analysis. 

Spectrum processing was then performed using MATLAB (Mathworks, Massachusetts) 

where the narrow spikes induced by cosmic rays were first removed. Then, as the Raman 

spectra of tissues typically contains Raman scattering, intrinsic tissue fluorescence and 

noise, background fluorescence from the tissue was estimated and removed using the 

adaptive minimax method [22]. Based on the method developed by Cao et al. [23], 

polynomial fits [24] (based on the fluorescence-to-signal (F/S) ratio) were used to minimize 

the residual mean square (RMS) error. The F/S ratio is defined as the maximum fluorescence 

divided by the maximum Raman scattering signal, where the minimum intensity value was 

set as zero. The proposed method, ‘adaptive minimax method’, consists of two steps. The 

first step involved the use of constrained and unconstrained polynomial fit for two 

consecutive orders, in which the order was determined by the adaptive part of the algorithm 

based on the F/S ratio; in the second step, the maximum value among the initial fits were 

used as the points for the final fit. The acquired spectrum had a better result compared with 

other methods using minimized RMS error and was followed by smoothing before further 

analysis was performed.

2.5 Chemical component decomposition and model fitting

The biochemical components analysis (BCA) is commonly used in Raman spectra analysis 

[25]. The assumption in this method is that the overall tissue spectra is the linear 

combination of the spectra belonging to each biochemical component. The BCA method 

estimates the contribution of each component’s whole spectrum using least square 

regression and this approach has been investigated at both the tissue level (for breast cancer 

diagnosis [26]) and cell level (study of necrotic cells [27]). To perform the BCA analysis, 

prior knowledge of the constituents of the tissue is required. Biochemical components linked 

to liver structure, including saturated lipid acid, unsaturated lipid acid, collagen, glycogen, 

phenylalanine, reduced glutathione, DNA, retinyl acetate and 3-nitro-L-tyrosine were 

purchased from Sigma Aldrich (USA) and used directly for Raman microscopy analysis. To 

further decompose the spectra of the sample tissue, the least square regression method was 

adapted [28], using a linear curve fitting function lsqnonneg in MATLAB. This function 

finds the non-negative coefficients of all component spectra that best fits the tissue spectra. 

To also generate the Raman images, the fitting coefficients of each compound were used to 

reconstruct the pixel intensity for both non-NASH (control) and NASH groups. A leave-one-

out cross-validation method was also adopted where one sample was used as the test set to 

calculate its probability of being diagnosed as a NASH sample while all other samples were 

used for training [29]. The diagnostic model was established by using the logistic regression 

while its performance was evaluated based on the area under the receiver operating 
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characteristic curve (AUC) [30] for both all tissues (with HCC) and less diseased tissues 

(without HCC).

2.6 K-means cluster analysis (KCA)

Using full range of the Raman spectrum as input, KCA was performed using MATLAB 

based program. Briefly, in this method spectra with similar profiles are grouped together as 

part of one cluster in an unsupervised manner. A pseudo color is assigned to a cluster and 

spectra are believed to have similar biochemical and molecular composition. The procedure 

is repeated until a stable solution is obtained. This method has been utilized and explained in 

several Raman mapping studies [31–33].

2.7 Statistical analysis

Data in this report were presented as average ± standard error of the mean (SEM). To 

compare the fitting coefficient between different groups, the initial test of difference across 

groups was analyzed using one-way ANOVA, The HSD correction method was then used as 

a post-hoc test to identify the significant differences among the different conditions using 

adjusted p values. p values <0.05 (*), p <0.01 (**) were considered statistically significant.

3. Results and discussion

3.1 Raman micro-spectroscopy reflects spatial distribution of biochemical moieties in 
tissues

Signals in the range of 600 cm−1 to 1800 cm−1 were retained and spike signals (defined as 

signal intensities that are beyond the recording range of the spectrograph) were excluded for 

further analysis. Following background subtraction and smoothing, the mean Raman 

spectrum of the NASH and control groups were plotted (Figure 3A). The overall spectrum of 

each group was obtained by averaging over all samples. Qualitatively, the signal intensity 

and peak location of certain Raman peaks differed between control and NASH samples. This 

difference was due to a change in lipid droplets and fat accumulation and subsequent cellular 

change within the tissue as most shifts could be attributed to peaks that were generated from 

non-saturated fat. There was almost no signal arising from non-saturated fat in the control 

group, signals were obtained for the later stage samples, suggesting that Raman micro-

spectroscopy is able to detect at the least, macro-steatosis with variation in both its size and 

distribution during disease progression, as a characteristic feature of NASH [34,35].

3.2 Raman spectra of NASH samples can be approximated using known biochemical 
components

Next, hypothesizing that the original Raman spectra can be approximated by summing up 

the Raman spectra from a set of known biochemical components, we selected 9 compounds 

that are NASH-related to recapitulate the biochemical signature characteristic of the disease. 

The spectrum of each individual biochemical component was vertically segregated for 

clarity (Figure 3B and C) [25]. The 9 compounds were selected to recapitulate the 

biochemical signature characteristic of the disease as they are indicative of inflammatory 

reactions, oxidative stress, cell viability and unsaturated fatty acids of NASH [36,37].
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3-nitro-L-tyrosine is a marker of peroxynitrite formation and is a known indicator of 

inflammation-induced tissue damage [38]. Phospholipids, a key component of the cell 

membrane, has direct association with a high fat diet [39]. Representative peaks for 

arachidic acid, a saturated fatty acid with a 20-carbon chain, were those at 1302 cm−1 and 

1446 cm−1 [40]. These two peaks were attributed to the CH2 stretching mode. The 

representative peaks of linoleic acid, a polyunsaturated acid, were those at 1266 cm−1 and 

1655 cm−1, with abundant double bonds (C=C). Both play an important role during NASH 

disease progression as fat accumulates. Reduced glutathione (GSH) is an important anti-

oxidant that prevents damage to important cellular components caused by reactive oxygen 

species and are converted into oxidized glutathione (GSSH) [41]. An increase in the GSSG-

to-GSH ratio is considered an indicator of oxidative stress [42]. We also included DNA and 

phenylalanine as increase in these molecules may be indicative of malignancy. Cancer cells 

exhibit an increased uptake of amino acids such as phenylalanine, which serve as an energy 

source [43]. Of note, the STAM™ NASH model is known to progress to HCC over time. 

Indeed, tumor cells were detected in 20 % of the analyzed NASH samples. The peak at 1004 

cm−1 corresponds to C–C stretching in phenylalanine [44]. The peak at 1600 cm−1 was 

generated from retinyl acetate, a natural form of vitamin. The Raman signals from actin, 

collagen and DNA were also used for compensating the spectrum from the liver tissue as 

they exhibit various characteristic spectra in the Raman signal [45].

By using the spectra from the selected compounds, the total Raman spectrum was further 

decomposed into the contributions of each biochemical component based on the original and 

fitted Raman spectrum of the liver tissue from both the non-NASH (control) and NASH 

groups (Figure 3D and E). Comparable to previous studies which used the same curve fitting 

approach [46], the fitting residue fluctuated between −0.08 to 0.09 with most spectral 

features of the original spectrum preserved. Each fitting coefficient was divided by the sum 

of all coefficients and converted to a percentage [25] to represent the relative contributions 

of the selected biochemical components spectra to the whole tissue spectrum and further 

analyzed.

3.3 Differences in biochemical composition between control and NASH samples

Using the fitting coefficients calculated from Raman spectrum decomposition via BCA 

method, the Raman reconstructed images were generated for lipid content in comparison 

with bright field images (Figure 4A and B), suggesting that Raman micro-spectroscopy can 

detect at the least, macro-steatosis with variation in both its size and distribution during 

disease progression, as a characteristic feature of NASH [34,35]. More compounds were 

mapped using such method in the Sup Figure 2 to show the bio-molecular variation for both 

non-NASH (control) and NASH groups. These results were further evaluated by performing 

K-means cluster analysis (KCA) using full range of the Raman spectrum. Three (3) cluster 

images were generated for both non-NASH (control) and NASH groups and compared with 

BCA images, Supporting Figure 2. Similar image profile of the cluster images suggest that 

Raman micro-spectroscopy in combination with statistical tools can be applied to facilitate 

objective identification of molecular changes with high spatial resolution with the onset of 

NASH.
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The fitting coefficients of the 9 selected biochemical components derived from spectrum 

decomposition for the different disease patterns, including steatosis, ballooning, 

inflammation and NASH detection, are shown in Figure 5A–D. For steatosis and ballooning, 

the increase in lipid content in the NASH samples as compared to the control samples was 

significant – the fitting coefficients for arachidic acid (saturated fat) and linoleic acid 

(unsaturated fat) increased from 8 to 25 % and 30 to 40 %, respectively. These findings 

corroborate with previous studies that reported similar findings, that fat accumulates during 

NAFLD progression towards NASH [47]. We also observed an increase in the amount of 3-

nitro-L-tyrosine with increasing severity of inflammation (overall assessment of all 

inflammatory foci) suggesting that 3-nitro-L-tryosine may be a potential indicator for cell 

damage, inflammation as well as NO (nitric oxide) production in NASH.

Comparing the NASH samples against the controls, the decrease in 3-nitro-L-tyrosine in the 

NASH as compared to the control samples is contradictory to what was observed based on 

inflammation scoring; this difference may be due to a small sample size as most of the 

NASH tissues were classified as mildly inflammatory during pathological evaluation. The 

decrease in the amount of reduced L-glutathione in the NASH samples as compared to the 

control group indicates the presence of increased oxidative damage in NASH [48], which 

has been associated with the onset of HCC [49]. Retinyl acetate is a natural form of vitamin 

A and a reduction in this compound typically is indicative of decreased cell turnover [50]. 

The decrease in this compound in the NASH samples suggests that there is rapid 

acceleration of cell death and decreased cell proliferation triggered by inflammation and 

degeneration [51]. While an increase in actin content was also observed, this difference was 

small and remained unchanged at later time-points. While we are unable to explain the 

decrease in DNA, one possibility is that the onset of NASH is associated with extensive cell 

death, which was the case in most of the analyzed NASH samples.

3.4 Classification model for NASH

The diagnostic plot for true negative (control) and true positive (NASH) samples with the 

resolution being 10×10 pixels’ size using the developed classification model is shown in 

Figure 6, where the different pixels represent the probability of a certain region being 

categorized as normal or diseased (Figure 6A and B) using logistic regression for both all 

tissues (with HCC) and less diseased tissues (with HCC). To further determine whether the 

classification model can accurately identify NASH, the receiver operating characteristic 

(ROC) curve was generated. The area under the ROC (AUROC) curve was found to be 0.87, 

suggesting that the selected biochemical compounds are indeed useful for the development 

of a NASH classification model. As expected, accuracy of the model from less diseased 

tissue is slightly lower compared to the model with HCC (end-stage disease) included. This 

is because an increase in the number of histological patterns incorporated or stored in the 

database for the learning algorithm typically increases the diagnostic power of a model. This 

data could potentially be used together with the multiple classifiers under the statistical 

framework of supervised learning, as proposed by Sowa et al. [52].

Recently, nonlinear optical microscopy imaging techniques such as stimulated Raman 

spectroscopy (SRS) and coherent anti-Stokes Raman scattering (CARS), have become 
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powerful tools for label-free imaging in cells and tissues as they enable deep tissue imaging 

that is non-destructive, has biochemical specificity, and scalable resolution [53–55]. 

Previous studies have demonstrated the potential of this approach to identify patients with 

gradually progressive fibrotic processes such as NAFLD [56], fatty liver disease (FLD) and 

cirrhosis [57]. However, the translation of Raman imaging into potential clinical applications 

or in vivo studies requires further innovation of minimally invasive diagnostic tools [29] and 

more information on the spatio-temporal distribution. In this study, we further demonstrate 

that Raman micro-spectroscopy can similarly be used for the detection of NAFLD/NASH 

through quantification of the biochemical and biological changes at the cell and tissue level 

with spatio-temporal resolution. Using such approach, it would enable us to discover the 

disease pattern such as compounds’ variation and cellular change. On the other hand, since 

the features used in the proposed classification system are currently limited to content-based 

level, the model could potentially be retrained and reinforced by incorporating 

morphological and textural features of compound distribution at the cellular level to increase 

diagnostic capabilities. Further studies are ongoing in our laboratory to improve the 

classification methods with advanced algorithms for spectrum decomposition and different 

field-of-view or spatial resolution.

4. Conclusions

Being a label-free approach that enables the quantitative evaluation of spatiotemporal 

variations in tissue chemical composition with disease progression, Raman micro-

spectroscopy is an untapped imaging modality that has the potential to greatly support the 

study of fatty liver disease. Elucidation of the spatio-temporal changes in chemical 

components comprising the Raman spectrum of liver tissue with progressing NAFLD/NASH 

is critically important for understanding the disease. As this study aims to create a 

classification model for NASH investigation in the mice sample given that the well-

recognized histopathological features of NASH include hepatocellular steatosis and 

ballooning, mixed acute and chronic lobular inflammation, and zone 3 peri-sinusoidal 

fibrosis, we employed those features as part of required components to assess the diseased 

tissue and developed a quantitative approach to NASH detection using Raman micro-

spectroscopy, coupled with least square regression and logistic regression. We showed that 

Raman micro-spectroscopy can accurately reveal the spatial-temporal distribution of 

biochemical in tissues. Subsequent analysis of the decomposed spectrum showed that the 

progression of NAFLD is associated mainly with an accumulation of fatty acids. We also 

identified 3-nitro-L-tryosine and reduced L-glutathione as potential biomarkers for 

inflammation and oxidative damage, respectively, by employing a machine learning-based 

algorithm to differentiate normal from NASH samples. This animal study also aims to 

identify possible markers in terms of chemical identities and/or signatures in Raman shifts. 

With such classification model and algorithms developed, we will adapt these on human 

biopsy samples and eventually correlate with non-invasive imaging or blood test markers. 

Though we realize that the model developed here would not be compatible with the in vivo 
fiber probes, such model would still be potential diagnostic tools for NASH in clinical 

settings.
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Figure 1. 
STAM mice model and imaging apparatus set up. a) Figure illustration of STAM mice 

model. The model was created by using both the effect of chemical toxic STZ (0 week) and 

high fat dietary (4 weeks) on non-genetic C57BL/6 mice with measurements conducted on 

the 5 different time points. A total of 42 cryo-preserved tissues were harvested from the 

mice. b) Schematic illustration of Raman micro-spectroscope set-up. Excitation laser was a 

continuous wave (CW) tunable Ti: Sapphire laser (wavelength set at 785 nm) with a 

frequency-doubles Nd: YAG laser (wavelength set at 532 nm) used as he pump source. The 

collimated beam passed through a laser line bandpass filter (BP), reflected by a dichroic 

mirror (DM) and focused onto the sample by a water-immersion objective lens (60X, 

NA=1.2). The dual-axis galvanometer mirrors were used to scan the beam over the sample. 

The inelastically scattered Raman signal was then delivered to the imaging spectrograph 

which covers Raman shift of −34 to 1894 cm−1 and the spectral resolution of 2.0 cm−1/pixel. 

Spectra are captured by a thermo electrically cooled charge-coupled device (CCD) and the 

bright field images were captured using an intensity controlled white light-emitting diode 

(LED) and the complementary metal-oxide semiconductor (CMOS) camera.
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Figure 2. 
Data acquisition and processing flow. The pre-processed averaged tissue spectrums were 

collected from both training and testing groups for selected 871 Raman frequency shifts 

before being decomposed to the selected compounds’ spectrums to build a multinomial 

logistic regression model, which was then evaluated by Receiver operating characteristics 

curve (ROC) analysis.
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Figure 3. 
Raman spectrum and signal decomposition. a) The averaged Raman spectrum of non-NASH 

(control) and NASH groups across 871 Raman shifts. b) The Raman spectra of the selected 

nine compounds selected for the Raman signal decomposition. c) The name of the nine 

compounds. d) and e) The spectrum fitting result of the non-NASH (control) and NASH 

groups. The blue line represents the original spectrum and the green one represents the 

reconstructed spectrum using the nine selected compounds after spectrum decomposition 

while the red line gives the residual.
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Figure 4. 
Raman reconstructed images using calculated fitting coefficients. a) Selected Raman 

reconstructed images using calculated fitting coefficients and b) bright field images of lipid 

content for non-NASH (control), steatosis, ballooning, inflammation and NASH stages.
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Figure 5. 
Fitting result for diseases using bar chart. a) The fitting result for the selected compounds by 

steatosis scoring. Figure 5b) The fitting result for the selected compounds by ballooning 

scoring. Figure 5c) The fitting result for the selected compounds by inflammation scoring. 

Figure 5d) The fitting result for the selected compounds by NASH scoring.
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Figure 6. 
Diagnostic plot and ROC graph. The diagnostic plot for a true positive and true negative 

sample where the pixels’ intensity represents the probability of being diagnosed as normal or 

diseased tissue with receiver operating characteristics curve (ROC) analysis of the 

classification model for a) all tissues (with HCC) and b) less diseased tissue (without HCC).
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