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Abstract

Background: Bistable behaviors are prevalent in cell signaling and can be modeled by ordinary differential
equations (ODEs) with kinetic parameters. A bistable switch has recently been found to regulate the activation of
transforming growth factor-β1 (TGF-β1) in the context of liver fibrosis, and an ordinary differential equation (ODE)
model was published showing that the net activation of TGF-β1 depends on the balance between two
antagonistic sub-pathways.

Results: Through modeling the effects of perturbations that affect both sub-pathways, we revealed that bistability
is coupled with the signs of feedback loops in the model. We extended the model to include calcium and Krüppel-
like factor 2 (KLF2), both regulators of Thrombospondin-1 (TSP1) and Plasmin (PLS). Increased levels of extracellular
calcium, which alters the TSP1-PLS balance, would cause high levels of TGF-β1, resembling a fibrotic state. KLF2,
which suppresses production of TSP1 and plasminogen activator inhibitor-1 (PAI1), would eradicate bistability and
preclude the fibrotic steady-state. Finally, the loop PLS − TGF-β1 − PAI1 had previously been reported as negative
feedback, but the model suggested a stronger indirect effect of PLS down-regulating PAI1 to produce positive
(double-negative) feedback in a fibrotic state. Further simulations showed that activation of KLF2 was able to
restore negative feedback in the PLS − TGF-β1 − PAI1 loop.

Conclusions: Using the TGF-β1 activation model as a case study, we showed that external factors such as calcium
or KLF2 can induce or eradicate bistability, accompanied by a switch in the sign of a feedback loop (PLS − TGF-β1
− PAI1) in the model. The coupling between bistability and positive/negative feedback suggests an alternative way
of characterizing a dynamical system and its biological implications.
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Background
Bistability has been found in many biological systems, and
mathematical models using ordinary differential equations
(ODEs) with respect to time provide a good representa-
tion for studying these dynamic behaviors [1–4]. Some bi-
stable systems show a binary behavior at the level of single
cells but exhibit a graded response for a population of cells
[1], while other bistable systems cause a binary output
even for populations of cells [5]. Different strategies have
been developed to study the two different categories of bi-
stable systems. For systems with bistability at the level of
single cells, the bistable nature of the output is often well-
known, guiding researchers to elucidate the underlying
molecular circuit that enables the bistability. For systems
with population-level bistability, the bistability may not be
obvious by inspection, in which case, laborious experi-
mental measurement is required to establish the
phenomenon [5]. In a recent study, we modeled the bi-
stable activation of transforming growth factor-β1 (TGF-
β1), which belongs to the category of population-level
bistability. The bistability was validated experimentally by
showing hysteresis in an in vitro system [5]. TGF-β1 is a
cytokine with broad importance for contexts such as can-
cer, liver cirrhosis, wound healing and regeneration. Our
model captures multiple pathways with positive and
negative effects towards TGF-β1 and its activators
(Fig. 1; Additional file 1: Supplementary Note 1).
In the current study, we explore some possible triggers

that could influence the bistable transition, and look for
system properties that correlate with bistability. We
demonstrate that factors like calcium and Krüppel-like
factor 2 (KLF2) (Additional file 1: Supplementary Note
2) level can be modeled implicitly into the reaction rate
parameters of the model, allowing us to discuss the on
and off transitions of bistability under different

conditions. We identified a coupling between the sign of
a signaling loop in the model (i.e., whether the signaling
loop shows positive feedback or negative feedback) and
the presence of bistability in the model. This could sug-
gest alternative ways to identify and validate of systems
with population-level bistability.

Results
Calcium and KLF2 have potential influence on the steady
state of TGF-β1 activation
Calcium would promote the steady state with high TGF-β1
activation
We built the low and high calcium variants of the model
by considering the potential effects of calcium on the
PLS-TSP1 interaction (see Methods, Fig. 1 red arrows).
Three parameters for the calcium effect were not known
quantitatively and were estimated (see Methods). In
Fig. 2a-b, we simulated the low calcium model and the
high calcium model over time with 27 total initial con-
figurations. These 27 configurations were combinations
of 3 initial concentrations for each of TGF-β1, TSP1,
and plasmin, the ssT level, ssP level, and the mean level
of ssT and ssP (27 = 33). The initial concentrations of
other species were set to the average of their two steady
state levels, (i.e., 0.5ssT + 0.5ssP). In the low-calcium
model, all trajectories converged to ssP with low TGF-
β1, but in the high-calcium model, several of the initial
configurations converged to ssT with high TGF-β1. To
generalize our understanding of this effect, we plotted
the boundary (the separatrix, Fig. 2c) between the initial
configurations that caused convergence toward ssT (red)
and the initial conditions that caused convergence to-
ward ssP (blue). Initial concentrations were constants
for all species other than PLS and TSP1. By comparing
the separatrix of the low calcium model (dot) and the
high calcium model (circle), we observe a shift of the
separatrix toward the blue (ssP) region. This means the
red (ssT) region is enlarged in high calcium environment
(arrow 3). As expected, calcium tips the balance between
PLS and TSP1 to achieve a significant effect on steady
state of TGF-β1 activation.

KLF2 would eliminate the steady state with high TGF-β1
activation
KLF2 is a transcription factor studied extensively in ath-
erosclerosis and fibrosis, and previous studies of KLF2
signaling showed TSP1 and PAI1 (plasminogen activator
inhibitor-1) to be two of its most strongly affected tar-
gets [6, 7]. To study how KLF2 would affect bistable ac-
tivation of TGF-β1, variants of the TGF-β1 activation
model were built as described in methods (Fig. 1 blue ar-
rows). We built a model called “100% KLF2” that down-
regulated the TSP1 production and PAI1 production
rates, proportional to the published effects of KLF2 on

PLS TSP1

TGF- 1

uPA

PAI1

PLG

Ca2+

Fig. 1 TGF-β1 bistable activation model. Black arrows represent the
reactions from [5]. Red arrows represent the effects of calcium on
the PLS-TSP1 interaction. Blue arrows represent the effects of KLF2
on PAI1 and TSP1 production. uPA is urokinase plasminogen activator,
and PLG is plasminogen
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the mRNA levels of TSP1 (−7.8 fold) and PAI1 (−7.4
fold). This is a strong effect, so we also built models with
90%, 80%, … 10%, and 0% of the KLF2 effects on the
TSP1 and the PAI1 production rates. Each model in the
series was simulated to obtain the steady state concen-
trations. When a dynamical system is bistable, its two
steady states are commonly obtained by simulating the
model twice, once starting from each side of the separa-
trix boundary (for example, initializing the system with
opposite extreme levels of TGF-β1). For our series of
models, the steady states obtained after initialization
with high TGF-β1 (resembling ssT) were plotted with
open red boxes, and the steady states obtained after
initialization with low TGF-β1 (resembling ssP) were
plotted with solid blue circles (Fig. 2d). Models for each

level of KLF2 were plotted in terms of PAI1 and TGF-β1
steady states (with KLF2 levels decreasing from left to
right). For models with KLF2 ≥ 40%, the open red boxes
fell at the same points as the solid blue circles, indicating
they are monostable. For models with KLF2 ≤ 30%, the
red open boxes were distinct from the blue circles, indi-
cating two steady states. For KLF2 levels from 0% to
100% (right to left), the low TGF-β1 steady state (blue
dots) remained almost constant, while the high TGF-β1
steady state (red boxes) merged with the low TGF-β1
steady state in an ultrasensitive manner when the KLF2
effect increased from 30% to 40%.
Bifurcation analysis studies how parameter change af-

fects the qualitative behavior and the steady states of a
system [8]. Bifurcation plot allows us to see all the

Fig. 2 Calcium and KLF2 have potential influence on the steady state of TGF-β1 activation. a-b TGF-β1 abundance is plotted over time,
after initializing the system from a given set of initial concentrations with (a) low calcium or (b) high calcium. In both cases, curves have
been colored blue if they converge to a steady state with low TGF-β1 activation (ssP), and colored red if they converge to a steady state
with high TGF-β1 activation (ssT). c Calcium causes a shift in the separatrix between steady states. Low-calcium and high-calcium simulations
were performed using various initial concentrations of PLS and TSP1. After observing in Fig. 2a-b that initial conditions with 0.5ssP and
0.5ssT were usually in the basin of convergence for the ssP state (for the low calcium model), we decided to shift the initial conditions.
For studying the behavior of the separatrix, the initial concentrations were set to .25*ssP and .75*ssT. The steady state outcomes are
shown by colors, with red indicating the steady state with high TGF-β1 (ssT), and blue indicating low TGF-β1 (ssP). For each combination
of PLS and TSP1, the low calcium result is indicated by the color of the small inner dot, and the high-calcium result is indicated by the
color of the outer circle. d Two steady state (s.s.) levels of TGF-β1 and PAI1 under different levels of KLF2. Red squares represent steady
states with high TGF-β1 activation (ssT), while blue dots represent steady states with low TGF-β1 activation (ssP). The y-axis is the log of
the steady state concentration of TGF-β1. e Bifurcation analysis under KLF2 low and KLF2 high conditions
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equilibria of the system and how the equilibria vary with
change of KLF2 levels and other rate parameters. We
chose one parameter named “keff2” to show the steady
state behavior of the low KLF2 and high KLF2 system.
“Keff2”, the enzymatic efficiency of plasmin, is one of
many rate parameters that affect the overall bistability of
the system. Figure 2e shows the bifurcation plot for the
0% KLF2 model and the 100% KLF2 model with respect
to the parameter “keff2”. Solids lines represent the stable
steady states of the system (ssP or ssT). Dotted lines rep-
resent one unstable steady state between the two stable
steady states, which is not achievable through simula-
tion. Black circles represent two limit points in the bifur-
cation curve, which separates the monostable regime
and bistable regime. Bifurcation analysis confirmed that
the system with 0% KLF2 retained bistability (an “S-
shaped” curve in Fig. 2e) while the system with 100%
KLF2 was monostable.

The bistability of the system correlates with the sign of
the PLS-PAI1 feedback loop
Positive and negative feedback loops are ubiquitous in
biological systems [9], and necessary for many functions
[10, 11]. The TGF-β1 activation network is composed of
multiple overlapping feedback loops, including two feed-
back loops between PLS and PAI1. One obvious loop is
the negative feedback loop PLS→ TGF-β1→ PAI1⊣PLS,
which is frequently cited [12–16]. A less obvious loop is
PLS⊣TSP1→TGF-β1→ PAI1⊣PLS, with two inhibitory
effects, meaning positive feedback (See Fig. 3. a-b). Inter-
estingly, experiments have already observed two oppos-
ite behaviors of PLS towards TGF-β1 and PAI1 [17–19],
giving indirect evidence for the possibility of both posi-
tive and negative feedback loops involving PLS, TGF-β1,
and PAI1.
To characterize the feedback between PLS and PAI1

in this network, we plotted feedback behavior in both
low KLF2 (0%) and high KLF2 (100%) models (Fig. 3a).
Since PAI1 (plasminogen activator inhibitor-1) is antag-
onistic towards PLS, the sign of the PLS-PAI1 feedback
loop is determined by the response of PAI1 to PLS. We
used a stepwise PLS input (black curve) to perturb both
the low (%0) KLF2 model and the high (100%) KLF2
model and we simulated the response of PAI1. The low
KLF2 model showed a decrease in the level of PAI1,
which means that the overall PLS-PAI1 feedback is dom-
inated by the PLS⊣TSP1→ TGF-β1→ PAI1⊣PLS double
negative (positive) feedback loop. The high KLF2 model
showed an increase in the level of PAI1, which means
that the overall PLS-PAI1 feedback is dominated by the
PLS→ TGF-β1→ PAI1⊣PLS negative feedback loop.
It was interesting to observe in simulation that KLF2

not only was able to eliminate one of the steady states
and turned the system into monostable, but also able to

change the sign of PLS-PAI1 feedback loop. To further
characterize the effect of KLF2 on the system and dis-
cuss the reason behind it, we plotted the 2d bistable re-
gion of the system in the kp1-kp2 phase plane. kp1 is the
TSP1 synthesis rate parameter and kp2 is the PAI1 syn-
thesis parameter, both of which affect the bistability of
the system. We found the boundaries of the bistable re-
gion through equilibrium continuation of kp2 for a
series of kp1 values (Fig. 3b). In our model, KLF2 is rep-
resented as a combination of fold changes of kp1 and
kp2, therefore, KLF2 levels can be represented as a series
of points in the kp1-kp2 phase plane (Fig. 3c). It can be
seen on Fig. 3c that KLF2 point is moving out of the bi-
stable region when KLF2 increases from 0 to 100%. We
then analyzed the sign of PLS-PAI1 feedback in this
kp1-kp2 phase plane. Interestingly, there is a large over-
lap between the bistable region of the system and posi-
tive feedback region of PLS-PAI1 feedback loop (Fig.
3d). KLF2 = 0 point lies in the overlapping area of the bi-
stable region and PLS-PAI1 positive feedback region,
while KLF2 = 100% lies in the overlapping area of the
non-bistable region and PLS-PAI1 negative feedback re-
gion. This explains why the change of KLF2 level can
have two different effects on the system.
The large overlap between bistable region and PLS-

PAI1 positive feedback region is also an interesting prop-
erty of the system, since it suggests that in reality, a
bistable TGF-β1 activation system most likely also has
positive PLS-PAI1 feedback. Although negative feedback
loop between PLS-PAI1 has been observed repeatedly
and is well accepted [17, 18], positive feedback would be
novel. We tested the sign of the feedback from PLS to
PAI1 using an experimental system known to exhibit
TGF-β1 bistability [5], a cell culture model of liver fibro-
sis. In this co-culture with primary hepatocytes and
HSC-T6 cell lines, we added different levels of PLS and
we measured PAI1 mRNA levels using RT-PCR (Fig.
3b). Increasing PLS was found to cause decreased ex-
pression of PAI1 in this bistable system, implying that
PLS and PAI1 can indeed exhibit positive feedback.

Discussion
Using a model of TGF-β1 activation, we explored the
ability of external factors to switch bistability on and off,
and we characterized the correlation between the bist-
ability of the model, and the sign of a feedback loop in
the network.
For the first part, we modeled known effects of cal-

cium on the balance between TSP1 and PLS [20–25],
and known effects of KLF2 on the gene expression of
PAI1 and TSP1 [6]. We then used modeling to show
how these effects would propagate through the system.
Specifically, the model predicted that calcium would sig-
nificantly promote TGF-β1 activation, shifting the
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bistable threshold of the system. The calcium-induced
increase in TSP1 would lie within the physiological
range of TSP1 [26]. Literature search reveals that extra-
cellular calcium may be relatively easy to perturb via

biomaterials of bandages, etc. Therefore, the effect of
extracellular calcium on TGF-β1 might have important
therapeutic implications for fibrotic or inflammatory dis-
eases where abnormal TGF-β1 contributes to disease.

Fig. 3 The bistability of the system correlates with the sign of the PLS-PAI1 feedback loop. a KLF2 affects the sign of PLS-PAI1 feedback loop. We
designed an exogenous addition of PLS into the system using a step function for the level of PLS over time (top panel, black curve). Stimulating
the TGF-β1 activation model with exogenous PLS caused two different effects in silico, depending on the KLF2 status. In the absence of KLF2 (red
curve on left), the stimulus caused positive (double-negative) feedback between PAI1 and PLS, which can occur via the red arrows shown. In the
presence of KLF2 (blue curve on right), exogenous PLS treatment caused a positive effect on PAI1 and the negative feedback loop (blue arrows)
was restored. b Methods to calculate the 2d bistable region. We did bifurcation analysis of kp2 for a series of kp1 value (100 equally spaced values
between kp1 = 1.2 and kp1 = 0) for the TGF-β1 activation model. The stable s.s. on the bifurcation curve were plotted as solid blue line, while the
unstable s.s. were plotted as dotted red line. The Limit Points (LP), which tell the bistable interval of the bifurcation parameter (kp2) were denoted
by black dots on the bifurcation curve. c The series of KLF2 levels cross the boundary of the bistable region in kp1-kp2 phase plane. The 2d bistable
region (dark gray) in kp1-kp1 phase plane can be constructed based on the kp2 coordinates of LPs in (b) and their corresponding kp1
values. KLF2 levels are represented as diamond dots. d Overlap between bistable region and PLS-PAI1 positive feedback region in the
kp1-kp2 phase plane. Bistable region is denoted by solid dark gray, while PLS-PAI1 positive feedback region is denoted by dotted light
gray. The x and y axis are all in log scale. e Empirically, PLS can down-regulate PAI1 gene expression in a co-culture of hepatocytes and
HSC-T6 cells. Hepatic stellate cells (HSC-T6) were cultured with primary rat hepatocytes in a 7:1 ratio overnight, creating a fibrosis-like state with high
TGF-β1 level. The next day, the medium was changed to non-serum medium with different doses of PLS. Cells were collected 24 h later
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For example, fibrotic diseases are driven by high levels
of TGF-β1 [27], and therapeutic studies in animals have
achieved significant access by increasing the PLS path-
way [28] or decreasing the TSP1 pathway [29]. In our
model, if we take the ssP state to be healthy and the ssT
state to be fibrotic, then a fibrotic system with high cal-
cium could transition toward health through an increase
of PLS (Fig. 2c, arrow 1), through a decrease of TSP1
(Fig. 2c, arrow 2), or a combination of both (Fig. 2c,
arrow 3).
In contrast, KLF2 was simulated to increase PLS activ-

ity and decrease the levels of TGF-β1, by suppressing
PAI1 and TSP1 expression. This is consistent with previ-
ous work with statin drugs on liver fibrosis [30], where
KLF2 upregulation was observed after treatment with
simvastatin. Our model predicts that one of the ways
KLF2 may contribute to improvement of liver fibrosis
may be by decreasing the activation of TGF-β1 through
reduction of the TSP1 and PAI feedback effects.
While modeling KLF2 effects, we noticed that loss of

bistability also caused a change in the sign of the PLS -
PAI1 feedback loop. Without KLF2, the PLS-PAI1 feed-
back loop was positive (double negative), but with KLF2
(100% KLF2) and with the destruction of bistability, the
PLS-PAI1 feedback loop was negative. Additional bifur-
cation analysis revealed that high KLF2 is a special case
of the general observation, that the bistability of the sys-
tem is correlated with the sign of the PLS-PAI1 feedback
loop.
We demonstrated the positive feedback behavior be-

tween PLS and PAI1 in the bistable TGF-β1 system,
using an in vitro experiment. Previous studies have
already revealed two opposite behaviors of PLS towards
TGF-β1 and PAI1 [17–19], providing indirect evidence
for the possibility of both positive and negative feedback
loops. Some aspects of the feedback loop are relatively
unambiguous. For example, PAI1 is a specific and potent
inhibitor of plasmin activation. PAI1 production follows
TGF-β1 signaling so closely that, in practice, PAI1 levels
are commonly measured as a readout of TGF-β1 activa-
tion [31]. The behavior of the feedback loop thus boils
down to the behavior of the PLS – TGF-β1 relationship.
In isolation, PLS clearly is able to activate TGF-β1. The
same effect has frequently been observed in more
physiological contexts, and there is considerable pub-
lished evidence that PLS and/or plasminogen activators
can cause an increase in TGF-β1 and/or PAI1 levels
[12–16]. This positive effect of PLS on TGF-β1 or PAI1
serves as evidence that the loop between PLS and PAI1
can have negative feedback. Although the activating abil-
ity of PLS toward TGF-β1 is well known and accepted,
some studies also suggest the opposite effect. For ex-
ample, PLS caused TGF-β2 levels to decline in breast
cysts [32]. Furthermore, one unconventional finding by

Seo et al., showed a positive feedback effect between
PAI1 and TGF-β1 [19], suggesting that PLS can cause a
decrease in TGF-β1. In sum, we found that there is
some support in the published literature for our predic-
tion that the relationship between PLS and PAI can
show either negative feedback or positive feedback, de-
pending on context.
Another important consideration in interpreting this

model is the redundancy of proteases and matrix factors
that play roles similar to PLS or TSP1. Actually, PLS is
only one of many proteases (including elastase, MMP-2,
MMP-9, ADAMTS1 and others) that can both activate
TGF-β1 and cleave TSP1 [33–36]. Meanwhile TSP1 can
inhibit many of these proteases [20, 37–39]. Extracellular
proteases often function interdependently by activating
each other (e.g. PLS activates several MMPs, which acti-
vate other MMPs [40, 41]), and some proteases may
have partially redundant effects. Likewise TSP1 may rep-
resent a larger class of matrix proteins and mechanical
factors with redundant roles in this model. Fibrillin and
LTBP1 can promote TGF-β1 activation [42–45], as can
factors that create mechanical tension in the matrix
[46, 47]. Fibrillin and LTBP1 can be cleaved by PLS
[14, 48], and even mechanical tension would be an-
tagonized by PLS cleavage. In other words, PLS and
TSP1 are archetypes of two larger classes of effects, a
protease category and a matrix category, that may be
capable of antagonizing the effect of each other, even
as they contribute individually to TGF-β1 activation.
The redundancy of the protease-versus-matrix compe-
tition suggests that this antagonism may be an organ-
izing principle of TGF-β1 regulation, with
evolutionary importance to the organism. On the
other hand, this redundancy also creates many com-
plexities that could perturb the phenomena we simu-
lated. For example, the effects we attribute to PLS
itself may actually result from the indirect effects of
PLS-activated proteases. Thus, we speculate that the
insights we drew from this model point to important
properties of general TGF-β1 activation regulatory
networks in different contexts.

Conclusions
Using TGF-β as a case study, we demonstrated that ex-
ternal factors could influence the bistability of the
model, and that these influences can be modeled impli-
citly using the reaction parameters of the model. Fur-
thermore, we showed that system-level properties like
the sign of feedback loops can correlate with the bist-
ability of a complex model. This provides a novel
characterization of the transition between bistable and
monostable regimes, and provides a non-obvious explan-
ation for seemingly contradictory experimental findings
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about the contribution of the PAI1 - PLS feedback loop
toward TGF-β activation.

Methods
TGF-β1 bistable activation model
We used the model built by Venkatraman et al. as the
base model of TGF-β1 regulation. We increased the
“kothers” parameter relative to the published model, to
allow for higher basal activation of TGF-β1 by other ac-
tivators such as integrins [42, 49, 50]. Simulations were
performed using kroneckerbio toolbox [51] and the
ode15s solver in MATLAB (Mathworks, Natick, MA).

Calcium model
Calcium can affect the structure of TSP1 [22–25], the en-
zymatic activity of PLS cleaving TSP1 [20], and the ability
of TSP1 to inhibit serine protease activity [21]. These ef-
fects were represented by the rate constants k3, k_3 and
k4 in the TGF-β1 activation model. We used the original
parameter settings as the low calcium settings. To reflect
high calcium conditions, we increased k3 by 10 fold, de-
creased k_3 by 0.1 fold, and k4 by 0.0001 fold, in order to
reflect a high level of calcium in the environment. Details
of the model can be found in Table S1 (Additional file 2)
and Table S2 (Additional file 3).

KLF2 model
It has been shown that KLF2 can decrease TSP1 expres-
sion by 7.8 fold and PAI1 expression by 7.4 fold [6, 7].
We simulated the TGF-β1 activation model with no
change (0% of the KLF2 effect, original parameter set-
tings), with 100% of the KLF2 effect (7.4 fold decrease of
PAI1 synthesis parameter kp2 and 7.8 fold decrease of
TSP1 synthesis parameter kp1), as well as a series of
intermediate models with 10%, 20%, … 90% of the KLF2
effect, causing intermediate levels of decrease in the
PAI1 and TSP1 synthesis rates.

Bifurcation analysis
Bifurcation analysis was performed using MATCONT
(https://sourceforge.net/projects/matcont/). Equilibrium
continuation function was called to generate the bifur-
cation curves in Fig. 2e and Fig. 3b.

Experimental methods
Isolation of primary hepatocytes was performed on male
Wistar rats (250-300 g), via a two-step collagenase per-
fusion method as described previously [52]. A co-culture
model of primary rat hepatocytes and hepatic stellate
cell line T6 (HSC-T6) was established as described in
[5]. Briefly, primary rat hepatocytes were first seeded at
a density of 2 × 105 cells on 35 mm collagen-coated
dishes (IWAKI) using Williams’s E media with 10% FBS.
After 4 h, hepatic stellate cell line T6 (HSC-T6) was

seeded at a density of 1.4 × 106 cells. The cells were cul-
tured overnight in 35 °C, and 5% CO2 in William’s E
media with 2% FBS to facilitate HSC activation. The next
day media was changed to Williams’s E without serum,
along with different doses of PLS. After 24 h, the cells
were collected.
RT-PCR was performed as described in [53]. Briefly,

mRNA was isolated from the cells using RNeasy mini kit
(Qiagen), and its concentration was quantified using a
Nanodrop 2000 UV-Vis Spectrophotometer. One micro-
gram of mRNA from each sample was converted to
cDNA (Invitrogen, Superscript Reverse Transcriptase
III) and real-time PCR reaction (Roche, Sybr Green
Master mix) was carried out for plasminogen activator
inhibitor-1 (PAI1) and β-actin, with in-house primers
shown in Table S3 (Additional file 4). The gene expres-
sion values were determined by the Del-Del CT relative
quantitation method; the target CT values were normal-
ized to the endogeneous reference β-actin, and the nor-
malized mRNA was expressed as a fold-change relative
to the untreated control.
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Additional file 1: Supplementary Notes. (PDF 107 kb)

Additional file 2: Table S1. List of equations and parameters used for
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Additional file 3: Table S2. Parameters settings for different models.
(PDF 47 kb)

Additional file 4: Table S3. List of primer sequences for genes probed
on quantitative real time PCR. (PDF 26 kb)
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