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Given a signaling network, the target combination prediction problem aims to predict efficacious and safe
target combinations for combination therapy. State-of-the-art in silico methods use Monte Carlo simu-
lated annealing (MCSA) to modify a candidate solution stochastically, and use the Metropolis criterion to
accept or reject the proposed modifications. However, such stochastic modifications ignore the impact
of the choice of targets and their activities on the combination’s therapeutic effect and off-target effects,
which directly affect the solution quality. In this paper, we present MASCOT, a method that addresses this
limitation by leveraging two additional heuristic criteria to minimize off-target effects and achieve synergy
for candidate modification. Specifically, off-target effects measure the unintended response of a signaling
network to the target combination and is often associated with toxicity. Synergy occurs when a pair of
targets exerts effects that are greater than the sum of their individual effects, and is generally a beneficial
strategy for maximizing effect while minimizing toxicity. MASCOT leverages on a machine learning-based
target prioritization method which prioritizes potential targets in a given disease-associated network to
select more effective targets (better therapeutic effect and/or lower off-target effects); and on Loewe addi-
tivity theory from pharmacology which assesses the non-additive effects in a combination drug treatment
to select synergistic target activities. Our experimental study on two disease-related signaling networks
demonstrates the superiority of MASCOT in comparison to existing approaches.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Cells use sophisticated biochemical interactions between pro-
teins and other factors in order to perform a variety of information
processing functions, collectively known as ‘‘cell signaling” in order
to perform a variety of functions such as growth, survival, prolifer-
ation and development. As signaling proteins rarely operate in iso-
lation through linear pathways, cell signaling can be viewed as a
large and complex network. Understanding signal flow in the net-
work is paramount, as alterations of cellular signaling events, such
as those that arise by gene mutations or epigenetic changes, can
result in various diseases. For example, alterations to the genes
that encode canonical signaling proteins Ras or PI3K are com-
monly observed in many types of cancers.

Discovery of therapeutic drugs that can target these altered sig-
naling pathways to restore the physiological state of a disease net-
work to normalcy has long been dominated by the ‘‘one-target
one-drug” paradigm (i.e., identify a single chemical entity that binds
to a single target). However, most complex disease states are poly-
genic and are characterized by a combination of interacting genes
and their products instead of a single gene. Hence, increasing atten-
tion has been shifted to combination therapy by targeting multiple
molecules simultaneously in a disease-related signaling network
[3,41]. Specifically, in this therapy, instead of a single compound
interacting with a single target, a concerted pharmacological inter-
vention of several compounds interacting with multiple targets is
made. Such a strategy has the potential to yield better benefits com-
pared to a single molecule (referred to as mono-therapy) for complex
diseases, because combination therapy offers the potential to achieve
equal efficacy using lower doses (i.e., by leveraging synergism,1) and it
may also offer novel opportunities to decrease the frequency at which
resistance arises. Examples of a synergistic treatment strategy can be
3.3, but
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found in the combination therapy of AIDS, cancer, and hypercholestero-
laemia [41].

The pipeline of target-based drug discovery can be boiled
down to three essential steps: the discovery phase, the preclinical
phase, and the clinical phase. In the discovery phase, targets are
first identified, screened and validated. A target is typically an
endogenous molecule such as a protein, a gene or a nucleic acid
sequence that affects the outcome of a disease or a medical
condition.2 Then, lead compounds for the validated targets are
identified, screened and optimized. These are chemical compounds
that demonstrate positive pharmacological activities that are in
line with the desired therapeutic effect and are most likely to be
successful in preclinical and clinical trials. Next, in the preclinical
phase, optimized lead compounds are tested in animal models to
establish drug safety and efficacy before proceeding to further test-
ing in human subjects in the clinical phase. This pipeline typically
spans 12–15 years and costs as much as 1 billion USD to bring a
single drug to market [20].

1.1. Limitations of the discovery phase

Unfortunately, the aforementioned pipeline has not resulted in
many successful new drugs. One key reason is that novel targets
identified during the discovery phase have a low success rate [55].
Only 3% of novel targets identified reach the preclinical phase, or
proceed to preclinical studies [61]. The remaining 97% of targets that
have not been validated become unattractive to pharmaceutical
companies due to the length of time needed for drug discovery
and a high chance of failure in clinical trials. Furthermore, the clas-
sical approach for combination therapy is generally based on
designing combinations based on clinical experience of doctors,
knowledge of biological mechanisms, and practical constraints in
the design of clinical trials [63]. Most drugs were initially developed
as effective single agents and were only later combined clinically. A
common assumption in this case is that only drugs that are effective
individually should be used as part of a drug combination. Such an
assumption excludes effective drug combinations such as anticancer
drug combinations that work by leveraging synthetic lethal interac-
tions [11]. Because the effect of drugs depends on the dose, several
doses need to be studied for the drug combinations. Consequently,
the number of possible combinations can grow exponentially. For
instance, a cancer chemotherapy regimen can consist of six or more
drugs from more than 100 anticancer drugs. However, investigating
all six combinations out of 100 (including partial combinations) at
three different doses to determine which combination is effective
generates 8:9� 1011 possibilities. The exhaustive set of all possible
combinations is too large for empirical testing, so the design of com-
bination therapies has created a need for scalable methods to prior-
itize combinations for testing. Although high-throughput screening
(HTS) technology [8] allows the testing of pairs of drugs over a range
of doses, combinatorial explosion still prevents exhaustive measure-
ment of combinations of more than two drugs. Hence, there is a dire
need to discover alternative procedures for the discovery phase to
improve the target combination identification process in terms of
efficiency of target discovery and efficacy of targets leading to the
identification of superior drug combinations.

1.2. Data-driven target combination discovery

Observe that the discovery phase in the drug discovery pipeline
for combination therapy broadly consists of two components: (a)
identification of biologically-relevant target combinations and (b)
2 In pathogen-related diseases, the target can sometimes be endogenous to the
pathogen, instead of the host. In this paper, our focus is on non-pathogen-related
diseases.
development of therapeutic compounds (e.g., drugs) that act on
these targets. In this paper, we focus on the first step. Specifically,
with the fast accumulation of experimental and omics data from

HTS along with growing availability of disease-related signaling net-
works, we explore the possibility of the pivotal role that the data ana-
lytics community can play in building novel data-driven tools to
facilitate early detection of superior target combinations. Such tools
can facilitate discovery of superior drug combinations, contribut-
ing to a powerful discovery and pre-screening platform when cou-
pled with other complementary technologies such as HTS.
Consequently, it has the potential to reduce the time and dollar
costs of the drug discovery pipeline.

1.3. Overview and contributions

In this paper, we present a generic approach called MASCOT

(Machine LeArning-based Prediction of Synergistic COmbinations
of Targets) to address the data-driven target combination discov-
ery problem by leveraging curated signaling networks. We assume
that a signaling network is represented using mass action model
where all interactions in the network are represented as reaction
equilibriums with kinetics information [3]. Then, given a disease-
related curated signaling network G and a desired therapeutic effect
(e.g., 50% ERKPP down-regulation), MASCOT predicts a set of syner-
gistic target combinations and the required target activities (type
and extent of perturbations) of these targets that achieve the
desired therapeutic effect and have minimum off-target effects.
Informally, the therapeutic effect and the off-target effects are mea-
sures of the intended and the unintended response, respectively, of
a signaling network to the drug combination. Note that each drug
effect on a target can be simulated in silico by perturbing the net-
work to bring it back from disease state to normal state. Hence, the
intended response during this perturbation is the resulting
changes to the concentration of the disease node (i.e., a downstream
node whose activity determines the phenotypes that are mani-
fested in response to signals flowing in the network [51]), whereas
the unintended response is the resulting changes to the sum of the
concentration of the rest of the nodes in the network.

In order to address the aforementioned problem, it is para-
mount for MASCOT to address the following key challenges. First,
how do we reduce the search space in order to tackle the impact
of exponential number of candidate target combinations? Second,
how can we ensure that the predicted target combinations are syn-
ergistic in nature? Third, how do we quantify the off-target effects
of a candidate target combination? The MASCOT algorithm is
designed to address these challenges.

Intuitively, the MASCOT algorithm consists of two phases: prepro-
cessing and efficacy-conscious simulated annealing. In the prepro-
cessing phase, MASCOT first modifies the reaction dynamics3 in G to
incorporate actions of activators and inhibitors as we do not know
apriori whether a target needs to be inhibited or activated.4 Activa-
tors and inhibitors of a protein X are drugs/therapeutics that alter
the system by increasing or decreasing the function of protein X,
respectively. Then, it leverages the Monte Carlo Simulated Annealing
(MCSA) technique to compute the target activities of each node in G
that are required to achieve the user-defined therapeutic goal, inde-
pendent of other nodes, by perturbing the network parameters. In the
efficacy-conscious simulated annealing phase, we utilize the modi-
fied G for evaluating the effects of candidate target combinations
where the individual target activities are exploited to judiciously
guide the selection of appropriate target activities in the candidate
combinations. Specifically, this phase realizes two subgoals: (a)
3 Modeled using ordinary differential equations (ODE).
4 The modified network behaves no differently from the original network when

there is no inhibitor or activator activity.
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determining the targets in the combination and (b) determining the
type of action (i.e., activation or inhibition) and the strength of the
action on the targets. In this phase, we select a set of proteins to
be the specific targets of the drugs, plus we select the magnitude
and sign of each drug’s effect on its target (activation or inhibition
to a given extent). This selection process (target selection process)
must ensure that the desired therapeutic effect is achieved while
minimizing off-target effects. The selection process (or the subgoals)
provide the constraints to be satisfied and the off-target effects pro-
vide the optimization problem. Hence, the problem can be modeled
as the optimization of a constraint satisfaction problem (CSP), which is
NP-hard [23]. Due to the hardness of this problem, we deploy a
machine learning-driven, simulated annealing-based heuristic solu-
tion to realize this phase. Specifically, we first utilize a machine
learning-based target prioritization technique [17] to rank target
nodes in G for their ability to impact the disease node by considering
network topology and network dynamics. Then, higher ranked nodes
are selectedwith higher probability for generation of a candidate tar-
get combination. Next, MASCOT utilizes the Loewe additivity theory [67]
from pharmacology to favor the use of more synergistic combina-
tions. Note that synergism implies that lower activity is required
to achieve a desired therapeutic goal which in turn is likely to reduce
off-target effects. Observe that the target selection process reduces
the search space dramatically by filtering antagonistic combinations
as well as combinations comprising nodes (targets) in G that
potentially do not influence the disease node sufficiently. After

MASCOT generates a candidate target combination, it uses an ODE solver
(e.g., Copasi [54]) to simulate the candidate combination effect. The
resultant concentration-time curves of various nodes in G are then
used to compute the therapeutic effect on the disease node and
the associated off-target effects. A candidate target combination is
accepted if it (a) achieves desired therapeutic goal and has fewer
off-target effects or (b) achieves the desired therapeutic goal and sat-
isfies the Metropolis criterion. Lastly, selected target combinations
are added to the solution set and ranked based on their off-target
effects.

In summary, this paper makes the following contributions:

� We present a data-driven target combination prediction problem
that aims to predict synergistic target combinations in a
disease-related signaling network that can achieve the desired
therapeutic effect and have minimum off-target effects. Note
that the goal of this work is to identify synergistic combinations
of targets with reduced off-target effects and excludes the eval-
uation of drug compounds that bind and regulate the target
molecules.

� We present a simulated annealing-based algorithm called MAS-

COT that addresses this problem by leveraging machine
learning-based target prioritization and Loewe additivity theory
[67] heuristics to reduce the search space significantly and gen-
erate superior quality results.

� We conduct a detailed empirical study applying MASCOT to a set
of curated signaling networks that have drug-target data associ-
ated with them. This study demonstrates the effectiveness and
superiority of MASCOT compared to state-of-the-art network-
centric target combination prediction techniques.

The rest of the paper is organized as follows. We discuss related
work in Section 2. In Section 3 we introduce the concepts and ter-
minologies necessary to understand this paper. We formally define
the data-driven target combination prediction problem in Sec-
tion 4. We present the MASCOT algorithm in Section 5. Experimental
study of our proposed approach is discussed in Section 6. The last
section concludes the paper.
2. Related work

In current practice, the design of drug combinations (and the
selection of target combinations) is rarely automated. State-of-the-
art in silico methods can broadly be classified into network-
centric optimization-based and association-based approaches. The
optimization-based approaches are based on sequential decoding
(SD) algorithms [10] or Monte Carlo simulated annealing (MCSA)
[31,65]. Stochastic search algorithms such as MCSA are expected to
perform better than SD for non-linear problems [10]. MCSA modifies
a candidate solution stochastically and the proposed modification
is accepted or rejected using the Metropolis criterion. Although
stochastic candidate modification effectively covers the search space
by producing a wide variety of candidates, it has two key limitations
when used for identifying target combinations. First, drug targets in
real signaling networks influence the therapeutic and off-target
effects differently, due to one or more downstream nodes’ involve-
ment in other protein–protein interactions. Ignoring this considera-
tion may yield combinations satisfying the user-desired therapeutic
effect, but with excessive off-target effects. Note that in [65] a user
needs to specify a priori specific side effects (as input to the algo-
rithm) in terms of the ratio of concentration of two relevant nodes.
Due to the complexity of biological networks, such a strategy is often
impractical as it is highly unlikely for a user to know all system-wide
side effects ahead of time. A second key limitation is although the
target activity affects the combination effects, it is chosen randomly
in MCSA. A judicious selection process might improve efficiency of the
overall process.

In comparison, TIMMA [59], a network-centric association-based
approach, utilizes a target inhibition network that is constructed
from functional data on drugs and their targets obtained from
target binding assays and high-throughput drug sensitivity
screens. Although TIMMA yields synergistic target candidates that
are druggable, it relies on drug treatment data that may not always
be publicly available. Moreover, it restricts the target combinations
to those targets which are associated with existing drugs. That is,
novel targets that are not hit by existing drugs but are beneficial
in treating the disease cannot be discovered. In addition, because

TIMMA does not include potential off-target effects of target
combinations in its analysis, the predicted combinations may be
toxic.

Unlike TIMMA, which is designed specifically for cancer, MASCOT is
a generic and extensible technique. In addition, it addresses the
above-mentioned limitations of optimization-based approaches.
In particular, MASCOT utilizes an existing machine learning-
based target prioritization technique [17], which prioritizes poten-
tial targets in a given disease-related network, to select more
effective targets in order to reduce off-target effects. It also
exploits Loewe additivity theory (LOEWE) [67] to assess the interac-
tion effect (i.e., synergism, antagonism) in a combination. LOEWE

can then be used to prune the target activity search space,
reducing computational cost and ensuring that targets selected
are synergistic.

A preliminary version of our work is described in [15] where
we propose an algorithm called STEROID for synergistic target
combination discovery from curated signaling networks.
Although STEROID exploits Loewe additivity theory, the target pri-
oritization technique it utilizes to select targets for a candidate
target combination is not driven by machine learning. As we
shall see later, this results in worse results compared to MASCOT.
Furthermore, in this paper we demonstrate the generic nature
of MASCOT by predicting target combinations in two different
curated signaling networks instead of a single network as stud-
ied in [15].
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3. Background

In this section, we briefly describe the graphical representation
of the curated signaling networks used in this study. Next, we
provide an overview of TAPESTRY [17], a machine learning-based
target prioritization framework and the Loewe additivity theory
(LOEWE) [67] on which the MASCOT algorithm is built. In the rest
of the paper, we shall use the heregulin (HRG)-induced
MAPK-PI3K signaling network implicated in a variety of cancers
(e.g., ovarian [29]) as a running example. Fig. 1 illustrates this
network.
3.1. Graph model of signaling networks

A biological signaling network describes the interactions
between molecular species involved in the network. Each inter-
action takes the form of a biochemical reaction. One such reac-
tion is the activation of ERK into phosphorylated ERK (ERKPP)
by its kinase, phosphorylated MEK in Fig. 1. Graphically, this
reaction is typically represented as a directed hyperedge con-
necting one set of nodes (e.g., {ERK and MEK}) to another set
(e.g., {ERKPP}) [34]. Hence, a signaling network is naturally rep-
resented as a directed hypergraph G ¼ ðV ; EÞ. Analysis of directed
hypergraphs is generally more complex than for graphs and
many graph algorithms cannot be used directly on hypergraphs.
Hence, hypergraphs are often transformed into graphs, for exam-
ple using methods such as bipartite and substrate graph repre-
sentation [34] (e.g., Fig. 1). In this paper, we use the method
in [22] and we chose the bipartite graph representation as it
retains the original structural information of the hypergraphs
[34]. Note that the transformed bipartite graph is used to com-
pute the topological features.

In the literature, the most common formalisms for signaling
network modeling approaches for combination therapy are,
namely Bayesian network, logic-based network, and ordinary dif-
ferential equation (ODE) model [3]. In this paper, we adopt the ordi-
nary differential equation (ODE) model. In this model, each reaction
(edge) in a signaling network is associated with an ordinary differ-
ential equation (ODE). The ODE model describes the system’s beha-
viour over time by using mass-action kinetics5 for instance, to
model the production and consumption rates of different molecular
species [2]. These models are typically constructed by translating
prior knowledge of production and consumption rate of different
molecular species into differential equations. For example, the ODE

model of Fig. 1 can be found in Biomodels [47] (BIOMD0000000146). Note
that the determination of these reaction kinetics can be technically
challenging. Hence, a large proportion of these kinetics are usually
estimated using parameter estimation techniques [49]. Despite this
uncertainty, these under-determined ODE systems can still model
real, observable biological behaviour, providing valuable means for
quantitative study.

Lastly, a disease node in a signaling network is a molecule that is
either involved in some dysregulated biological processes impli-
cated in a disease, or is of interest due to its potential role in the
disease. An example of a disease node in the MAPK-PI3K network
(Fig. 1) is phosphorylated ERK (ERKPP) [58].
3.2. Machine learning-based target prioritization

Target prioritization is the process of ranking targets according
to some criteria such as sensitivity or gene expression level. It is
5 The law of mass-action states that for an elementary reaction where all the
stoichiometric coefficients of the reactants are one, the rate of reaction is proportional
to the concentrations of the reactants.
potentially useful in helping to plan experiments since resources
are limited and experiments can be costly and time-intensive [43].

In this work, we utilize TAPESTRY [17], a network-centric, machine
learning-based approach that prioritizes targets in signaling net-
works with respect to a disease node using both topological and
dynamic features of the network. An unique aspect of TAPESTRY is
its ability to leverage knowledge gained from learning of training
networks with known targets to first identify predictive features
that characterize targets and then use these predictive features
to identify targets of the given network with unknown targets.
Specifically, it is built on top of TENET, a recently proposed target
characterization6 technique [16]. TENET deploys a support vector
machine (SVM)-based strategy to learn offline the optimal set of pre-
dictive topological features for characterizing known curated targets in
a set of publicly-available signaling networks (referred to as candi-
date networks) and generates a set of characterization models based
on these features. Then given a disease-related signaling network
with unknown targets (referred to as unseen network) and the set
of characterization models generated by TENET, TAPESTRY prioritizes
its nodes (ranks nodes based on topological and dynamic criteria)
with respect to a disease node by leveraging a characterization
model and network dynamics. Specifically, it selects the ‘‘best”
characterization model it should adopt as its prioritization model
from the collection of characterization models of the candidate net-
works. A prioritization score (referred to as putative target score) is
then derived from the selected model and the dynamics of the
unseen network, and used to prioritize candidate targets. Note that
candidate targets are those that are upstream of the disease
node [60].

Remark. The goal of target prioritization is to rank individual
target nodes and hence is different from our goal to identify
synergistic combinations of targets with reduced off-target effects.
3.3. Loewe additivity theory (LOEWE)

LOEWE computes the combination index as a measure of the inter-
action effect between the drugs in a combination. The foundation
and assumptions of this method have been documented exten-
sively [67]. Given a set of drugs X and therapeutic effect T, let Dx

and dx be the doses of drug x 2 X required to achieve effect T when
used alone and in combination, respectively. Then, the combination
index is defined as

CI ¼
X
x2X

dx

Dx
: ð1Þ

The combination is synergistic, additive or antagonistic if
CI < 1;CI ¼ 1 or CI > 1, respectively. The isobologram (Fig. 2) pro-
vides a visual interpretation of LOEWE. It is a graph with the individ-
ual drug doses (D1 and D2) as its axes. The ‘‘line of additivity” is
used to interpret the drug interaction. Synergistic and antagonistic
combinations are represented by drug doses that fall below and
above the line of additivity, respectively [67]. As we shall see later
in Section 5.2, this theory can be adapted to guide selection of syn-
ergistic targets.

4. Target combination prediction problem

In this section, we formally define the problem of target combi-
nation discovery. We begin by introducing several concepts related
to drug target.
6 Target characterization is the process of defining the characteristics of the targets
and is useful in drug design for these targets and in the identification of novel targets
that share similar characteristics with known targets.
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4.1. Drug target and target activity

First, we present the concept of a target and its activity (referred
to as target activity) in the context of signaling networks. A drug
asserts its effect on a network through the target and the target
activity is a variable related to the extent of target perturbation.
The drug effect is typically modeled in silico as modulation of the
node concentration. The modulation is achieved by modifying a
network parameter that controls the concentration of the node
associated with the target. This parameter can either be the node’s
edges (typically represented as ODE reactions) [65] or the node itself
(initial concentration) depending on whether the node concentra-
tion varies with time. We now formally define these two concepts.
We first introduce the notion of reactant-product edge set to facili-
tate exposition. Given a signaling network G ¼ ðV ; EÞ and a node
u 2 V , the reactant-product edge set of u is defined as
rpeu ¼ Ru

S
Pu where Ru � E and Pu � E are the edge sets involving

u as reactants and products, respectively.
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Definition 1. Given a signaling network G ¼ ðV ; EÞ, and node u 2 V
with concentration time-series profile uu and reactant-product
edge set rpeu, the drug target of a node u is cfix ¼ u if uu is
constant, and it is cvar 2 rpeu otherwise.
Definition 2. Given a drug target c perturbed by drug D with dis-
sociation constant KD, the target activity of c is defined as Cc ¼ ½D�

KD

where ½D� is the concentration of D.
The ODE modification varies according to the drug type (e.g., acti-

vators or inhibitors) and the mechanism of action. Note that there
are several different types of activators and inhibitors. In this
paper, we model activation using nonessential activation [13], and
inhibition using competitive inhibition [65] for the following rea-
sons. Nonessential activator affects the rate of reaction but does
not stop the reaction from happening when it is absent. Since drugs
are exogenous to the biological system, we expect them to affect
the system only when they are present. Competitive inhibitors, on
the other hand, is the most common type of inhibition. We assume
that a target is druggable by both activators and inhibitors due to
the lack of readily available information on the type of action (acti-
vation or inhibition) that is valid for each target. Note that violation
of this assumption will result in an invalid target combination.
However, since MASCOT returns a set of acceptable solutions instead
of a single solution, invalid solutions can be discarded in favor of
the next valid solution. Note that each reversible reaction is made
up of an equivalent pair of irreversible reactions (forward and
backward reactions). We explicitly convert all reversible reactions
to irreversible reactions using [54] in order to clearly distinguish
whether it is the forward or the backward reactions that is acti-
vated or inhibited.

Given two nodes u and v, an inhibitor I and an activator Awhere
u and v have constant and variable concentration time-series pro-
files, respectively, let rpev be the reactant-product edge set of v.
Then, the targets of u and v, denoted as cfix and cvar , respectively,
are defined as

cfix ¼ u ð2Þ

cvar ¼
Vmax½S�
Km þ ½S� 2 rpev ð3Þ

where Vmax is the maximum velocity; Km is the Michaelis–Menten
constant; and ½S� is the concentration of the substrate S.

The competitive inhibition of cfix and cvar are given by the follow-
ing equations:

IðcfixÞ ¼
½u�0
½I�
KI

ð4Þ

IðcvarÞ ¼
Vmax½S�

Kmð1þ ½I�
KI
Þ þ ½S�

ð5Þ

In the above equations, ½u�0 is the initial concentration of u and
KI is the dissociation constant of I. Similarly, let KA be the dissoci-
ation constant of A. The nonessential activation of cfix and cvar are
defined as follows.

AðcfixÞ ¼
½A�
KA

½u�0 ð6Þ

AðcvarÞ ¼
Vmax½S�ð1þ ½A�

KA
Þ

Km þ ½S� ð7Þ

For example, the reaction PIP3 + Akt�!AktPIP3 whose origi-
nal ODE is k[PIP3][Akt] becomes k½ PIP3 �½Akt�ð1þ ½A�

K ½A�
Þ and

k½ PIP3 �½Akt�
1þ½I�

KI

when modified to simulate nonessential activation and

competitive inhibition, respectively.
4.2. Target effects

Next, we formally define the notions of therapeutic effect and
off-target effects. Given a signaling network G ¼ ðV ; EÞ, a drug target
c and the desired therapeutic effect 1th, let u 2 V be the node (dis-
ease node) associated with effect 1th, and aucðu�

u Þ and aucðuþ
u Þ be

the area under the concentration–time series profile curve of node
u before and after c is perturbed, respectively. Then, the therapeutic
effect 1thðcÞ and off-target effects 1off ðcÞ of c are given by the following
equations.

1thðcÞ ¼
jaucðu�

u Þ � aucðuþ
u Þj

aucðu�
u Þ

ð8Þ

1off ðcÞ ¼
X
v2Vnu

jaucðu�
v Þ � aucðuþ

v Þj
aucðu�

v Þ

� �
ð9Þ

Note that 1thðcÞ and 1off ðcÞ can be determined from in silico simu-
lation using Copasi [54]. The combination effects are defined simi-
larly whereas aucðuþ

u Þ and aucðu�
u Þ can be estimated using the

linear trapezoidal rule method [12].
For example, the therapeutic effect of Akt is given as

1thðAktÞ ¼
jaucðu�

ERKPP
Þ�aucðuþ

ERKPP
Þj

aucðu�
ERKPP

Þ whereas the off-target effects is given

as 1off ðAktÞ ¼
P

v2VnERKPP
jaucðu�

v Þ�aucðuþ
v Þj

aucðu�
v Þ

� �
. Note that in practice, the

therapeutic effect is dependent on the stage of the disease and is
typically measured as inhibition of certain phenotypic response
(e.g., cell growth) which may not be linearly correlated with the
inhibition of the disease node concentration.

4.3. Problem definition

The goal of the target combination prediction problem is to iden-
tify targets and their activities that achieve a user-specified thera-
peutic effect (e.g., to achieve 50% inhibition of ERKPP) while
minimizing the off-target effects. Hence, the problem can be mod-
eled as the optimization of a constraint satisfaction problem (CSP)
which is NP-hard [23]. The CSP is represented as a triple (X;D;C),
where X;D and C represent the set of variables, the variables’
domain and the set of constraints, respectively. The element X rep-
resents the set of drug targets and target activities; D represents
the set of candidate targets in a given disease-related network
and the target activity range; and C represents the condition that
the combination therapeutic effect must match the desired thera-
peutic effect.

Definition 3. Given a set of target combination C ¼ fC1; � � � ;CNg
and a desired therapeutic effect 1th, let Ci ¼ fc1; � � � ; cmg where

cj 2 Ci is the jth target in the ith combination. Let 1off ðCiÞ and 1thðCiÞ be
the off-target effects and therapeutic effect of combination Ci,
respectively. Then, the target combination prediction problem is
defined as

Ci ¼ minf1off ðCiÞj1thðCiÞ ¼ 1thg
5. Predicting target combinations

In this section, we begin by providing the rationale behind the
design of MASCOT. Then, we present the two practical heuristics that
we shall exploit for modifying candidate solutions. Finally, we
describe the MASCOT algorithm.

5.1. Rationale behind the design of MASCOT

MASCOT integrates simulated annealing with machine learning-
based target prioritization and LOEWE from pharmacology for
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predicting target combinations. Briefly, it consists of two phases,
namely, preprocessing and efficacy-conscious simulated annealing.
In the preprocessing phase, all reversible reactions in the network
are converted to equivalent irreversible pairs of reactions and then
the reactions are modified to simulate actions of nonessential acti-
vators and competitive inhibitors. Recall from Section 4.1, such
preprocessing allow us to disambiguate the reaction that shall be
perturbed and the type of perturbation required for our predicted
target combination solutions. Note that clarity of our target combi-
nation solutions can facilitate drug design activity that follows by
pinpointing the exact reactions that the drugs should target and
how the drugs should affect the reactions.

In the efficacy-conscious simulated annealing, target prioritization
heuristic and LOEWE heuristic are used for guiding the selection of
candidate target combination solutions without exhaustively
exploring all possible combinations. In particular, target prioritiza-
tion heuristic leverages on target prioritization rank to select for
more effective targets for the combination whereas LOEWE heuristic
is used for selecting targets with synergistic activities. Unlike state-
of-the-art MCSA-based approaches that generate random candidate
solutions, MASCOT uses these heuristics to effectively reduce the
solution search space leading to efficient discovery of potential
solutions. Note that the heuristics are chosen based on their rele-
vance to efficacious therapies. Specifically, we advocate that pref-
erentially selecting for prioritized targets (using a machine
learning-based target prioritization technique) in the combinations
can lead to more effective target combinations. In addition, LOEWE

ensures synergistic interaction of targets. Note that in MASCOT, can-
didate solutions have to satisfy the desired therapeutic conditions
and are optimized for off-target effects. Instead of choosing specific
off-target effects (e.g., ratio between two proteins), we consider
off-target effects in a general sense. That is, deviation of activities
of all nodes except the disease node before and after perturbation
of the target combination. The rationale behind this is that impor-
tance of specific off-target effects are dependent on signaling net-
works and their associated disease and users may not know at the
onset which particular off-target effects are more important.

5.2. Heuristics

Target prioritization heuristic. The goal of using the target pri-
oritization heuristic is to improve the average solution quality by
choosing more effective targets with higher probability, thereby
minimizing off-target effects. To achieve this, we first translate
the prioritization rank (generated by TAPESTRY) to an equivalent tar-
get rank, then convert the rank to a selection probability value which
is used to decide if the target will be accepted. We now introduce
these two concepts.

Given a signaling network G ¼ ðV ; EÞ and a target prioritization
method P, let cfix and cvar be the targets of nodes u and v, respec-
tively where u and v have constant and variable concentration–
time series, respectively, and u;v 2 V . Then, the target ranks of
cfix and cvar , denoted as Wcfix and Wcvar , respectively, are defined as

Wcfix ¼ WP:u ð10Þ

Wcvar ¼
X
w2W

WP:w ð11Þ

where WP:u is the rank of u based on P;W ¼ X
S
Y ;X;Y � V , and

cvar ¼ ðX;YÞ.
The selection probability (sp) of a target is the likelihood of

selecting it. We use the rank-based fitness function to obtain a tar-
get’s selection probability. The fitness function is based on the indi-
vidual target ranks and avoids scaling problems associated with
using actual objective values. It is defined as

sp ¼ 2� kþ

jT jð2� kþÞ þ 2ðkþ � 1Þ
ð12Þ

where T is the set of individual targets in the signaling network and
kþ is the parameter (called selective pressure) used to control the
expected sampling rate of the individual target. Note that kþ is typ-
ically in the range [1,2] [6].

Observe that the aforementioned heuristic is independent of
any specific target prioritization method. However, as we shall
see in Section 6, target combination prediction using machine
learning-based TAPESTRY typically generates superior quality results
compared to non-machine learning-based techniques.

LOEWE heuristic. The effects (recall from Section 4.2) resulting
from a drug combination can be interpreted as drugs at particular
dosages hitting their targets. This produces certain target activities
causing a particular response of the network. Hence, an interaction
of multiple targets in a combination can be assessed the same way
as drug interactions by replacing the drug doses with target activ-
ities. A target combination is guaranteed to be synergistic if its tar-
get activities are chosen from values below the line of additivity.
Following from Section 3.3, we define the target interaction as
follows.

Definition 4. Given a therapeutic effect 1th and a target combina-
tion C ¼ fc1; � � � ; cmg, let C0ðciÞ and CðciÞ be the target activities of the

ith target in C that achieve 1th when targeted alone and in
combination, respectively. Then, the target combination index
of C is defined as

tciC ¼
X
ci2C

CðciÞ

C0ðciÞ
ð13Þ

The combination is synergistic, additive or antagonistic if
tciC < 1; tciC ¼ 1 or tciC > 1, respectively.

Following from Definition 4, for a 2-target combination
C ¼ fc1; c2g, the synergistic ranges of targets c1 and c2, denoted
as src1 and src2, respectively are defined as src1 ¼ ½0� C0ðc1ÞÞ and
src2 ¼ ½0� Cðc2ÞÞ, where Cðc2Þ 2 ½0� C0ðc2ÞÞ and tci < 1. Graphically,
these synergistic ranges can be visualized in Fig. 2 (rightmost
isobologram) as ‘‘synergistic range1” and ‘‘synergistic range2”.

5.3. The algorithm MASCOT

For solving CSPs, systematic algorithms (e.g., backtracking) have
been proposed that rely on partial instantiation of the candidate
solutions to eliminate candidates that violate the constraints. In
the target combination prediction problem, full instantiation of
the candidate solution is needed to find the combination effects.
Hence, these systematic algorithms cannot be applied effectively.
Metaheuristics (e.g., simulated annealing (SA)) are used instead to
find approximate solutions as they can achieve good performance
results for large combinatorial optimization problems [45]. MCSA (a
variant of SA) has been proposed for finding drug target combina-
tions [65,31], but suffer from certain limitations as highlighted in
Section 2. We shall now present an algorithm called MASCOT (out-
lined in Algorithm 1) that addresses these limitations by leveraging
on machine learning-based target prioritization and LOEWE heuris-
tics for modifying drug target and target activity of candidate
solutions.
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Algorithm 1: Algorithm MASCOT

Given a signaling network G, a set of prioritized node rank W
generated by TAPESTRY, a desired therapeutic effect 1th and the
required combination size S, MASCOT identifies a set of synergistic
target combinations R which satisfies 1th and has minimal off-
target effects 1off . The inputs G and W are used to modify the drug
targets and target activities. In addition, G is also used to simulate
the target combination effects. Several other parameters
(kþ; �t ; �a;N; t0 and imax) that are required by MASCOT are set to
default values, but can be modified if required (Line 2). The param-
eter kþ is used to compute the selection probability of the target. In
practice, it is difficult to achieve the therapeutic effect exactly, and
additive target combinations are generally close to the line of addi-
tivity without lying exactly on the line. Hence, we specify adjust-
ment factor parameters �t and �a to relax the condition for
therapeutic effect and additive combination into bound conditions,
respectively (e.g., 49.5%–50.5% inhibition of ERKPP and additive if
0:95 6 tci 6 1:05). Finally, the parameters N; t0 and imax are used
to configure the SA and they control when the SA terminates: when
N solutions are found or when t0 � imax iterations are completed.

Algorithm 2: The PREPROCESSINPUT Procedure (Phase 1)

Phase 1: Preprocessing. In this phase (Algorithm 2), the rever-
sible reactions in G are first converted into pairs of irreversible
reactions using [54] (Lines 4–5). Then, the drug targets cfix (Line
8) and cvar (Lines 10–11) of nodes with constant and variable con-
centration–time series profiles, respectively, are found based on
Definition 1. Next, the reactions are modified to simulate the
effects of the targets when modulated by non-competitive inhibi-
tors and essential activators (Line 13) according to Eqs. (4)–(7).
Finally, the individual target activities (ITA) C0 required to achieve
the desired therapeutic effect (e.g., 50% down-regulation of ERKPP,
�t=5%) are found using MCSA configured with the parameters t0 and
imax. Targets that cannot achieve the desired therapeutic effect
alone (i.e., complete the maximum number of iterations without
finding any target activity that can achieve the desired therapeutic
effect) are deemed to have C0 ¼ 1.

Phase 2: Efficacy-conscious simulated annealing (ESA). The

ESA consists of three subphases which are repeated until either
the temperature t reaches zero or the required number of solutions
N is found (Line 5). The subphases consist of target combination
generation (Line 7), combination effect calculation (Line 8) and can-
didate acceptance test (Line 9).

Algorithm 3: The GETCOMBI Procedure (Phase 2.1)

In the GETCOMBI procedure (Algorithm 3), the candidate combina-
tion X consisting of S-target is generated. Lines 3–5 implement the
target prioritization- and Line 6 the LOEWE heuristics. The first target
A is randomly selected using SELECTRANDOMTARGET (Line 4) and
accepted in ACCEPTTARGET (Line 5) if the probability of selecting A
(selection probability) is greater than a random number in the
range [0–1] (i.e., spA > randð0;1Þ where RANDð�Þ is the random
operator). Its activity is then selected within the synergistic range
(Definition 4) using the SELECTACTIVITY procedure (Line 6). Similar
steps are repeated to find subsequent targets and their activities.

Next, the GETEFFECT procedure obtains the therapeutic and off-
target effects by first simulating the candidate solution using
Copasi [54] and then calculating the therapeutic effect and the
off-target effects (Section 4.2). Finally, these effects are used to
assess the candidate in ACCEPTCOMBI (Algorithm 4) using the Metro-
polis criterion. A candidate is accepted if it satisfies any one of
these conditions:

1. If it is synergistic, achieves the required therapeutic effect and
has off-target effects lower than the current solution (curr) (Line
2).

2. If it achieves the required therapeutic effect and

e�
1off ðXÞ�1off ðcurrÞ

t P randð0;1Þ (Line 4).

The UPDATESOLUTION procedure updates the solution set and the
current solution with X if the candidate is accepted.

Algorithm 4: The ACCEPTCOMBI Procedure (Phase 2.3)

For instance, consider a two-target combination. Let backward
reaction 29 (denoted as r29b), which represents the reaction
AktPIP3!PIP3 + Akt, be the first randomly selected target.



68 H.E. Chua et al. /Methods 129 (2017) 60–80
r29bwill be accepted if its selection probability spr29b > randð0;1Þ.
The activity of r29b is selected from within the range ½0� C0ðr29bÞÞ,
where C0ðr29bÞ is the activity of r29b alone that is required to
achieve 50% down-regulation of ERKPPwith �t=5%. The second tar-
get (e.g., r13ðRaf ! RafHÞ) is randomly selected from the set of
candidates excluding r29b (i.e., T =r29b), and will be accepted if
spr13 > randð0;1Þ. The activity of r13 is selected from the range

½0� Cr13Þ where Cðr29bÞ
C0ðr29bÞ

þ Cðr13Þ
C0ðr13Þ

< 1� �a and Cðr29bÞ 2 ½0� C0ðr29bÞÞ.
The therapeutic and off-target effects of the combination
c ¼{(r29b;Cðr29bÞ), (r13;Cðr13ÞÞg are computed as follows:

1thðcÞ ¼
jaucðu�

ERKPP
Þ � aucðuþ

ERKPP
Þj

aucðu�
ERKPP

Þ

1off ðcÞ ¼
X

v2VMAPKnERKPP

jaucðu�
v Þ � aucðuþ

v Þj
aucðu�

v Þ

� �

Finally, the Metropolis criterion is used to assess if the combina-
tion will be added into the solution set.

Theorem 1. The worst case time and space complexities of MASCOT are
Oðt0 � imax � ðjV j þ jEjÞ � jujÞ and OðjV jðjEj þ jujÞÞ, respectively,
where t0 is the initial temperature; imax is the limit on iterations per
cycle; jV j and jEj are the number of nodes and irreversible reactions,
respectively, of the given signaling network; and juj is the number of
time points in the concentration time-series profiles used to estimate
the target effects. The algorithm converges in finite time on a
continuous domain.
Theorem 2. The MASCOT algorithm converges in finite time.
The proofs of the above theorems are given in the Appendix.

Remark. Observe that MASCOT can handle large signaling networks
efficiently. Consider the time complexity of MASCOT in Theorem 1. In
practice, the parameters t0; imax, and juj have values ranging from
100 to 500. Hence, the time complexity can be expressed as
Oða� ðjV j þ jEjÞÞ where a ¼ t0 � imax � juj and tends towards a
constant value. Therefore, MASCOT is approximately linear to the size
of the input signaling network in practice.
7 As of April 2017, only 1.27% of the curated networks in Biomodels have more than
250 nodes and out of these very few are disease-related networks.

8 Accumulation of mitochondrial ATP results in activation of insulin granule
exocytosis. Hence we set an arbitrary increase of 25% increase in mitochondrial ATP
as our therapeutic goal.
6. Experiments

6.1. Experimental setting

MASCOT is implemented using Java. In addition, we use several
publicly available tools and libraries as follows: (a) libSBML library
[9] for reading and processing the SBML files of the signaling net-
works. (b) Copasi is a simulation tool for biological networks and
offers several functionalities including parameter estimation, sen-
sitivity analysis and steady-state analysis. We use Copasi for per-
forming LSA-based target prioritization, and its Java API to simulate
the target perturbation effects in STEROID [15] and MASCOT. (c) Net-
workPrioritizer [33] plugin for Cytoscape for performing Weighted
Borda Fuse (WBF)-based and Weighted AddScore Fuse (WASF)-based
target prioritization. The experiments are performed on a com-
puter system using a 64-bit operating system with 8GB RAM and a
dual core processor running at 3.60 GHz.

Summary of Approaches Studied. Recall that in Section 5.2 we
study two heuristics. In particular, the target prioritization heuris-
tic is orthogonal to any specific target prioritization technique. In
the comparative study, we investigate different target prioritiza-
tion approaches, namely, TAPESTRY [17], PANI [14], LSA [28] and Net-
workPrioritizer [33]. Since NetworkPrioritizer provides two
prioritization approaches, namely WBF and WASF, we study both
approaches. Table 1 summarizes the different approaches studied
and the heuristics used in each approach.

Note that modification of the candidate will differ depending
on the heuristics used. For MCSA, the targets and activities are
selected randomly. For MASCOT-TAPESTRY, MASCOT-PANI, MASCOT-LSA,

MASCOT-WBF and MASCOT-WASF, the targets are selected using Algo-
rithm 3 (Lines 3–5) while the activities are selected randomly.
For MASCOT-LOEWE, the targets are selected randomly while the activ-
ities are selected from within the synergistic range (Algorithm 3,
Line 6). For MASCOT, STEROID, MASCOT-LOEWELSA, MASCOT-LOEWEWBF and

MASCOT-LOEWEWASF, the targets and activities are selected using
Algorithm 3 (Lines 3–6).

Finally, we do not perform comparison with TIMMA [59] as it
demands knowledge of target binding assays and high-
throughput drug sensitivity screens, which are not publicly-
available for the signaling networks that we study.

Datasets. Recall that MASCOT requires signaling networks to be
modeled using mass action model. Although many nodes in
publicly-available curated signaling networks contain some of that
information, few networks have full coverage quite yet. This
restricts us to only focus on a small number of curated signaling
networks taken from Biomodels.7 Specifically, the MAPK-PI3K net-
work [29] (36 nodes and 34 hyperedges) is used for analysis and
the desired therapeutic effect is set to 50% ERKPP down-
regulation. We also use the glucose-stimulated insulin secretion
network comprising 59 nodes and 45 hyperedges [32] with the ther-
apeutic goal of 25% increase in mitochondrial ATP.8 Note that it is
also not possible to choose large disease-related signaling networks
from other sources as the ODE information is not necessarily available
for all edges in such networks. For example, the largest publicly-
available signaling network [21] contains over 6000 nodes. However,
it does not contain ODEs.

Performance Metrics. Recall that the goal of MASCOT is to iden-
tify target combinations which satisfy the therapeutic effect and
have minimized off-target effects. Hence, we assess the different
approaches based on the following criteria: (a) off-target effects
of target combinations, (b) runtime performance, and (c) number
of solutions found.

MASCOT Configuration. Unless otherwise stated, the
combination size shall be set to 2 and the following default values
shall be used for the rest of the parameters:
ft0 ¼ 100; imax ¼ 500; N ¼ 50; �t ¼ 5%; �a ¼ 5%; kþ ¼ 1:8g. We
used Copasi java API for estimating the combination effects and its
parameters were set as follows:ftrajectory task = ‘‘Time-Course”,
method type = deterministic, absolute tolerance = 1� 10�12g. The
same configuration is also set for STEROID.

For all tables and discussion that follow, the terms ACT and IN

shall denote activators and inhibitors, respectively, whereas forward
and backward reactions are marked with superscripts f and b,
respectively.

6.2. Experimental results

We performed several sets of experiments to compare the dif-
ferent variants of MASCOT against the state-of-the-art approaches.
Note that figures in this subsection uses the approach IDs given
in Table 1.

Effects of Heuristics. First, we examine the effects of using dif-
ferent heuristics on the MAPK-PI3K network to determine the best



Table 1
The different approaches studied.

p
indicates the heuristic used by each approach.

Approach ID LOEWE TAPESTRY PANI LSA WBF WASF

MCSA 1
MASCOT-LOEWE 2

p

MASCOT-TAPESTRY 3
p

MASCOT-PANI 4
p

MASCOT-LSA 5
p

MASCOT-WBF 6
p

MASCOT-WASF 7
p

MASCOT 8
p p

STEROID 9
p p

MASCOT-LOEWELSA 10
p p

MASCOT-LOEWEWBF 11
p p

MASCOT-LOEWEWASF 12
p p
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MASCOT variant. We assess different MASCOT variants in terms of off-
target effects, actual size9 of solution sets found and execution time.
Fig. 3 summarizes the effects of heuristics. In all our experiments, we
use MCSA (Approach 1) as our baseline comparison. We make several
observations. First, heuristics can be used to reduce off-target effects.
This is illustrated by the boxplot in Fig. 3. The median off-target
effects of all MASCOT variants are either the same or lower than that
of MCSA. Second, the use of LOEWE heuristic produces fewer outliers,
reduces off-target effects and cuts down execution time more effec-
tively than target prioritization heuristic. In addition, compared to
approaches that use only target prioritization heuristic, those
approaches that use LOEWE heuristic have larger actual solution set
sizes. These results suggest that LOEWE heuristic may have a greater
role to play in influencing off-target effects, actual solution set size
and the execution time required to find target combinations. Third,
the use of LOEWE heuristic together with an appropriate target prior-
itization heuristic may help to reduce the minimum off-target
effects. For instance, in Approaches 8 (MASCOT) and 11 (MASCOT-

LOEWEWBF), the minimum off-target effects are 1.037 and 1.069,
respectively. These minimum values are lower than the correspond-
ing approaches that use only a single heuristic (i.e., MASCOT-LOEWE,

MASCOT-TAPESTRY, MASCOT-PANI, MASCOT-LSA, MASCOT-WBF and MASCOT-WASF).
Next, we examine the characteristics of solutions found by

using different MASCOT variants. The solutions are characterized
based on target interaction (synergistic, additive or antagonistic)
and combination type (activators, inhibitors, or mixed activator
and inhibitor). We make the following observations from Fig. 4.
First, target prioritization heuristic appears to favor identification
of antagonistic target combinations. Antagonistic drug combina-
tions are found to be useful in combating drug resistance in various
diseases including cancer [5]. Hence, this heuristic may be partic-
ularly useful in identifying combinations that can overcome drug
resistance. Second, approaches incorporating the LOEWE heuristic
tend to yield more solutions that are made up of only inhibitors.
Note that development of drugs that inhibit PPI is perceived to be
easier than drugs that activate PPI. This is because in the design of
drugs that are activators, there is a need to achieve good binding
in order to replicate the protein interaction and stimulate increase
in target activity [26]. Hence, LOEWE heuristic may also be useful in
enriching the solution set with inhibitor-only target combinations.

In particular, Approach 8 (MASCOT) has the lowest median (8.006)
and minimum (1.037) off-target effects. In comparison, STEROID per-
forms worse (minimum = 1.073 and median = 12.921). Hence,
machine learning-based MASCOT is superior to non-machine learning-
based STEROID.
9 Note that in the experiments, although we set the required number of solutions to
be 50, the actual number of solutions found may be lesser.

10 STEROID did not predict the known combination. Instead, its predictions can be
liken to monotherapy since the resultant combinations are made up of reactions tha
Biological Relevance of Target Combinations. We shall now
examine the biological relevance of the target combinations found
using MASCOT and the baseline approach, MCSA.

Target combinations for MAPK-PI3K network. First, we examine
the ability of both approaches in finding a set of benchmark target
combination relevant to ovarian cancer and targeting the MAPK-

PI3K network. The benchmark combination set is curated from lit-
erature in the PubMed repository using ‘‘ovarian”, ‘‘cancer”, and
‘‘combination” as keywords. Among 5863 PubMed records that
were returned, we find 3 combinations (Table 2) fitting the criteria.
Table 3 shows the targets in the MAPK-PI3K network that match
those in Table 2. We examine our solution sets to identify those
combinations involving the targets in Table 3. Both solution sets
contain one known combination (reported in Table 4). In particu-
lar, the target activities and off-target effects of the combination
predicted by MASCOT are lower than that predicted by MCSA.10

In addition, we observe that a large percentage of solution set
found using MASCOT contained at least one target in known drug
combinations compared to MCSA (Fig. 5). In particular, the top-10
solutions (Table 5) in MASCOT (top-10 solutions with least off-
target effects) are highly enriched with these known targets, par-
ticularly the MEK (or ERK) inhibitor. This finding suggests that the
MEK inhibitor may be a good target to be used in combinations.

Then, we examine the biological relevance of the top-10 solu-
tions found using both approaches. In the MASCOT solution set, 2 tar-
get combinations (combinations ST5 and ST10) involve large target
activities (greater than 1000) whereas in MCSA (Table 6), all top-10
solutions (MT1 to MT10) implicate large target activities. Note that
large target activity implies either high drug concentration or very
small dissociation constant, and is an indication of a high potential
in having side effects, especially if the treatment regime requires
repeated drug dosing [18]. Hence, MCSA tends to yield target combi-
nations that require large target activities, increasing the potential
for side effects. In addition, we perform literature search to look for
references that support the usefulness of these combinations. We
searched PubMed specifically for publications related to these pre-
dicted combinations and summarize the findings below.

ST1: Studies reveal that MEK inhibition exhibits the best clinical
response in the basal subtype of ovarian cancer where there is no
mutation of the oncogenes, RAS and RAF [39]. RAF mutation is
common in ovarian cancer and high level of Raf-1 activity was
found to correlate with the advanced stage of ovarian cancer
[25]. In [36], Li et al. establish the role of Raf kinase inhibitor pro-
tein (RKIP) as a metastasis suppressor gene. Based on the above,
we reason that combination ST1 consisting of an ERK phosphatase
simulate the behavior of MEK inhibitors.
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Fig. 3. Effect of heuristics.

Table 2
PubMed results relevant to ovarian cancer drug combinations targeting the MAPK-

PI3K network.

PMID Target 1 Target 2

22180401, 21062259 Akt inhibitor MEK inhibitor
21632463 PI3K inhibitor MEK inhibitor
14675307 PI3K inhibitor Akt inhibitor
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and a Raf inhibitor may be useful in treating the advance stage of
ovarian cancer.

ST2 and ST3: Profound growth inhibition and apoptosis were
observed in ovarian cancer cells treated with CI-1040, a MEK1/2
inhibitor [48]. These ovarian cells carry mutations in KRAS or BRAF
and they typically overexpress DUSP4, an ERK phosphatase [56].
Note that there is currently no known inhibitor that acts directly
on ERK, and ERK inhibition is typically achieved through MEK inhi-
bitors [53]. Hence, this correlates with our computational predic-
tion of combinations ST2 and ST3 involving ERK phosphatase
activator and ERK (or MEK) kinase inhibitor.

ST7: We did not find any supporting evidence that combination
ST7 has been performed, successfully or otherwise, in experiments.
However, individual components of these combinations have
shown efficacy in ovarian cancer [62,44,66]. Hence, they warrant
further investigation as a potential target combinations.

MT4: Corresponds to the known target combination consisting
of a MEK inhibitor and an Akt inhibitor [4] in Table 2.



Table 4
Known combinations in solution sets.

Approach Target 1 [Activity] Target 2 [Activity] 1off Combination

MASCOT-LOEWETAPESTRY Reaction 33 ACT [1633.218] Reaction 16 ACT [185.982] 11.889 Akt inhibitor + MEK inhibitor
MCSA Reaction 16 ACT [323.857] Reaction 31 IN [1640.247] 15.534 MEK inhibitor + Akt inhibitor

Table 3
Mapping between targets in Table 2 and MAPK-PI3K network.

Target in Table 2 Inhibition Mechanism Corresponding target(s) in MAPK-PI3K network

Akt inhibitor Disruption of Akt binding to its membrane localizing
factor (PIP3) or dephosphorylation of PIP3

Activators of Reaction 29b, Reaction 30, Reaction 33;
Inhibitors of Reaction 29f, Reaction 31, Reaction 32

MEK inhibitor MEK dephosphorylation or blockade of MEK phosphorylation. Is also
used to achieve ERK inhibition as there is no known ERK inhibitors.

Activators of Reaction 16, Reaction 18, Reaction 20 or Reaction 22;
Inhibitors of Reaction 15, Reaction 17, Reaction 19 or Reaction 21

PI3K inhibitor Inhibits PI3K in ATP-competitive manner Activators of Reaction 24b, Reaction 26; Inhibitor of Reaction 24f
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Table 5
Top-10 target combinations for MAPK-PI3K network found using MASCOT. Note that targets present in Table 3 are marked with w.

No. Target 1 [Activity] Target 2 [Activity] 1off Combination References/Comments

ST1 Reaction 22 ACT
w [2.142] Reaction 14 ACT [0.009] 1.037 ERK phosphatase activator + Raf inhibitor [39,25,36]

ST2 Reaction 22 ACT
w [2.209] Reaction 15 IN

w [0.097] 1.091 ERK phosphatase activator + MEK kinase inhibitor [48,56]
ST3 Reaction 21 IN

w [2.080] Reaction 22 ACT
w [0.203] 1.092 ERK kinase inhibitor + ERK phosphatase activator [48,56]

ST4 Reaction 21 IN
w [2.174] Reaction 17 IN

w [0.068] 1.097 ERK kinase inhibitor + MEK kinase inhibitor Mono-therapy
ST5 Reaction 22 ACT

w [2.150] Reaction 1b IN [7575.148] 1.138 ERK phosphatase activator + Inhibitor of dissociation of
heregulin from ErbB4 receptor

–

ST6 Reaction 19 IN
w [1.623] Reaction 21 IN

w [0.089] 1.598 ERK kinase inhibitor + ERK kinase inhibitor Mono-therapy
ST7 Reaction 19 IN

w [1.636] Reaction 12 ACT [0.012] 1.796 ERK kinase inhibitor + Ras inhibitor [62,44]
ST8 Reaction 18 ACT

w [1.299] Reaction 19 IN
w [0.011] 2.411 MEK phosphatase activator + ERK kinase inhibitor –

ST9 Reaction 17 IN
w [1.078] Reaction 18 ACT

w [0.399] 2.458 MEK kinase inhibitor + MEK phosphatase activator –
ST10 Reaction 18 ACT

w [1.288] Reaction 1b IN [7803.570] 2.519 MEK phosphatase activator + Inhibitor of dissociation
of heregulin from ErbB4 receptor

-
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Note that combinations ST4 and ST6 (resp. MT8 and MT10) are
akin to mono-therapies as they involve the same type of drugs (i.e.,
ERK or MEK kinase inhibitor, and tyrosine kinase inhibitor). In addi-
tion, we observe that MCSA produces many combinations (combina-
tions MT1, MT2, MT5, MT6, MT7 and MT9) that involve promoters
of known mediators of cancer (e.g., PI3K [19]). Such target combi-
nations, though counter-intuitive, can still achieve the therapeutic
goal if the effect of other targets can offset the pro-cancer signals,
resulting in an overall anti-cancer signal. However, extra caution
should be exercised for these combinations since improper man-
agement of the balance between the pro- and anti-cancer signal
can easily aggravate the cancer. We did not find any supporting
evidence for the remaining combinations (combinations ST8 and
ST9). In comparison, only two combinations (MT3 and MT4) of

MCSA-based approach has corresponding evidence in the literature.
Hence, compared to MCSA, MASCOT is able to identify target combinations
that are biologically more relevant.

Next, we examine the bottom-10 solutions. Table 7 reports the
list based on our proposed method (corresponding list based on

MCSA-based approach is reported in Table 8). We note that 60% of

MASCOT solutions and 100% of MCSA solutions have at least one target
with activity greater than 1000. Hence, compared to the top-10
solutions, the bottom-10 solutions have more combinations with
large target activities. This implies that combinations with smaller
target activities are likely to produce combinations with smaller



Table 8
Bottom-10 target combinations for MAPK-PI3K network found using MCSA. Note that targets present in Table 3 are marked with w.

No. Target 1 [Activity] Target 2 [Activity] 1off Combination Reference/Comments

MB1 Reaction 34f
ACT [3797.693] Reaction 24b IN [5956.664] 66.220 promoter of receptor internalization + PI3K activator –

MB2 Reaction 23b
ACT [162.172] Reaction 34f ACT [3800.193] 66.247 promoter of dissociation of PI3K from RP +

promoter of receptor internalization
–

MB3 Reaction 15 ACT [5993.379] Reaction 6f IN [148.058] 97.426 MEK kinase activator + Shc kinase inhibitor –
MB4 Reaction 17 ACT [3168.839] Reaction 5b ACT [7628.053] 107.372 MEK kinase activator + promoter of

dissociation of Shc from RP

–

MB5 Reaction 11 ACT [20.804] Reaction 5f IN [9864.965] 116.578 MEK kinase activator + inhibitor of RP and Shc binding –
MB6 Reaction 4 IN [8413.204] Reaction 1b ACT [6145.133] 122.430 inhibitor of receptor dimerization + promoter

of dissociation of heregulin from ErbB4 receptor
[46,1]

MB7 Reaction 30 ACT
w [4506.434] Reaction 1b ACT [3407.957] 256.984 PIP3 phosphatase activator + promoter of dissociation

of heregulin from ErbB4 receptor
[46,42]

MB8 Reaction 1b
ACT [5221.591] Reaction 10 IN [5680.547] 303.923 promoter of dissociation of heregulin from

ErbB4 receptor + Shc phosphatase inhibitor
–

MB9 Reaction 32 IN
w [5538.346] Reaction 1b ACT [5418.050] 308.214 PIP3 kinase inhibitor + promoter of

dissociation of heregulin from ErbB4 receptor
[46,30]

MB10 Reaction 1b
ACT [3556.864] Reaction 28 IN [6870.239] 3998.338 promoter of dissociation of heregulin

from ErbB4 receptor + PIP3 phosphatase inhibitor
–

Table 7
Bottom-10 target combinations for MAPK-PI3K network found using MASCOT. Targets present in Table 3 are marked with w.

No. Target 1 [Activity] Target 2 [Activity] 1off Combination Reference/Comments

SB1 Reaction 3f IN [29.517] Reaction 18 ACT
w [0.043] 17.866 tyrosine kinase inhibitor + MEK phosphatase –

SB2 Reaction 3b ACT [5556.930] Reaction 5f IN [0.042] 18.689 tyrosine kinase inhibitor + inhibitor of RP and Shc binding –
SB3 Reaction 4 ACT [44.387] Reaction 26 ACT

w [102.262] 19.228 promoter of receptor dimerization + PI3K inhibitor –
SB4 Reaction 3f IN [20.701] Reaction 29f

ACT
w [5784.119] 19.671 tyrosine kinase inhibitor + Akt activator –

SB5 Reaction 29f ACT [8541.949] Reaction 3b ACT [4481.641] 20.635 PI3K inhibitor + tyrosine kinase inhibitor [24]
SB6 Reaction 1f IN [13.847] Reaction 30 ACT

w [9707.636] 21.885 tyrosine kinase inhibitor + PIP3 phosphatase activator –
SB7 Reaction 21 IN

w [2.153] Reaction 1b ACT [158.909] 22.021 ERK kinase inhibitor + promoter of dissociation of
heregulin from ErbB4 receptor

[62,38]

SB8 Reaction 1f IN [31.578] Reaction 16 ACT
w [9.148] 35.070 tyrosine kinase inhibitor + MEK phosphatase –

SB9 Reaction 1f IN [37.157] Reaction 9b ACT [7084.384] 35.086 tyrosine kinase inhibitor + promoter of GS and ShP binding –
SB10 Reaction 25b ACT [2859.395] Reaction 11 IN [164.144] 71.650 promoter of PI3K binding with activated

ErbB4 receptor + MEK kinase inhibitor
–

Table 6
Top-10 target combinations for MAPK-PI3K network found using MCSA. Note that targets present in Table 3 are marked with w.

No. Target 1 [Activity] Target 2 [Activity] 1off Combination References/Comments

MT1 Reaction 13 ACT [1294.274] Reaction 14 ACT [7706.958] 2.945 Raf activator + Raf inhibitor –
MT2 PP2A IN [26.286] Reaction 3b

IN [6175.158] 6.827 PP2A inhibitor + tyrosine kinase activator –
MT3 Reaction 16 ACT

w [220.584] Reaction 4 IN [7444.068] 15.409 MEK phosphatase activator + inhibitor of receptor
dimerization

[62,66]

MT4 Reaction 16 ACT
w [656.857] Reaction 31 IN

w [1640.247] 15.534 MEK phosphatase activator + PIP kinase inhibitor [4]
MT5 Reaction 26 IN [6535.419] Reaction 3b

ACT [6033.846] 17.329 PI3K activator + tyrosine kinase inhibitor –
MT6 Reaction 3b ACT [5730.172] Reaction 16 IN [6892.326] 18.375 tyrosine kinase inhibitor + MEK phosphatase inhibitor –
MT7 Reaction 16 IN [6163.809] Reaction 3b

ACT [5845.658] 18.455 MEK phosphatase inhibitor + tyrosine kinase inhibitor –
MT8 Reaction 3b ACT [5551.488] Reaction 34b

IN [7065.998] 18.486 tyrosine kinase inhibitor + tyrosine kinase inhibitor Mono-therapy
MT9 Reaction 3b ACT [5541.069] Reaction 1b

IN [8923.956] 18.522 tyrosine kinase inhibitor + inhibitor of dissociation of
heregulin from ErbB4 receptor

–

MT10 Reaction 3b ACT [5758.748] Reaction 34b
IN [942.042] 18.679 tyrosine kinase inhibitor + tyrosine kinase inhibitor Mono-therapy
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off-target effects. In addition, we note that the targets in the
bottom-10 MASCOT solutions are mostly located upstream in the
MAPK-PI3K network. This is in contrast with the top-10 MASCOT

solutions where targets are positioned further downstream and
nearer to the disease node (ERKPP). No particular trends exist for
the MCSA solutions.

The literature curation findings for the bottom-10 solutions are
summarized as follows:

SB5: Glaysher et al. investigated combinations of EGFR inhibi-
tors and PI3K inhibitors and found that certain combinations
(e.g., ZSTK474with erlotinib and gefitinib) exhibit enhanced
synergistic activity [24]. This correlates well with combination SB5.
SB7, MB6, MB7 and MB9: We did not find any supporting evi-
dence that combinations SB7, MB6, MB7 and MB9 have been per-
formed, successfully or otherwise, in experiments. However,
individual components of these combination have shown efficacy
in ovarian cancer [62,38,46,1,42,30]. Hence, they warrant further
investigation as potential target combinations.

We note that several of the targets identified in the combina-
tions (combinations SB3, SB4, SB9, SB10, MB1, MB3, MB4, MB5
and MB10) involve promoters of known mediators of cancer. We
did not find any supporting evidence for the remaining combina-
tions (combinations SB1, SB2, SB6, SB8, MB2 and MB8). Although
the bottom-10 combinations contain several biologically relevant
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combinations, many of them have relatively large off-target effects
and involve targets with large activities. In addition, 70% of combi-
nations found using MASCOT contain tyrosine kinase inhibitors (TKI).
Clinical studies have found that although treatments with tyrosine
kinase inhibitors (TKI) sometimes produce promising results, most
treatment lose their effectiveness soon due to resistance often
caused by activating mutations in downstream effectors of the tyr-
osine kinases [57]. Apart from drug resistance, another potential
issue of TKI is toxicity (e.g., nephrotic syndrome) due to the dis-
ruption of multiple downstream signaling pathways of the tyrosine
kinases which are involved in normal organ functioning [27].
Hence, designing combinations involving TKI would require addi-
tional considerations such as understanding the idiosyncrasy of a
patient’s genome in order to select other suitable targets for the
combinations which can minimize TKI-resistance. The activity of
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Table 9
Target combinations for glucose-stimulated insulin secretion network found using MAS

No. Target 1 [Activity] Target 2 [Activity] 1off Combin

1 Reaction 7 IN [12.479] Reaction 38 IN [8483.898] 97.318 glycer

+ FAD d
2 Reaction 7 IN [12.998] Reaction 17 IN [5079.313] 115.524 glycer

inhibito
3 Reaction 10 IN [31.713] Reaction 45 ACT [3258.442] 126.778 lactat

dehydr

4 Reaction 36 ACT [4371.772] Reaction 10 IN [45.927] 2470.605 glutat

dehydr

5 Reaction 38 IN [8974.797] Reaction 10 IN [50.682] 2531.171 FAD de
dehydr

6 Reaction 38 ACT [4537.414] Reaction 10 IN [50.993] 2576.963 FAD de
dehydr

7 Reaction 36 ACT [2953.557] Reaction 10 IN [52.789] 2583.011 glutat

8 Reaction 21 IN [2739.023] Reaction 10 IN [52.789] 2613.709 mitoch
+ lact

9 Reaction 38 IN [1189.972] Reaction 7 IN [21.114] 2615.501 FAD de
inhibito

10 Reaction 36 ACT [784.932] Reaction 10 IN [53.747] 2624.339 glutat
TKI in the combinations should also be kept low to reduce poten-
tial toxicity. However, the predicted combinations that involve TKI

generally have high activity level, making them less than ideal as
safe target combinations. Hence, target combinations with larger
predicted off-target effects may be indicative of less effective
and/or more toxic combinations in the real world.

Target combination discovery for insulin secretion network. The
application of MASCOT to well-studied MAPK-PI3K network show-
cases its prediction quality. We now apply it to glucose-
stimulated insulin secretion network [32], which has not been
extensively studied for target combinations. We set
ft0 ¼ 100; imax ¼ 500; N ¼ 50; �t ¼ 5%; �a ¼ 5%; kþ ¼ 1:8g. Note
that MCSA failed to complete execution within 8 days on this net-
work. Hence, we do not present the results.
25 40 50
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The solution set is listed in Table 9 and its characteristics are
quite different from that of the MAPK-PI3K network. First, the
solution set of the glucose-stimulated insulin secretion net-
work contains fewer solutions. Second, the off-target effects of
these solutions are generally relatively high (e.g., greater than
1000). Third, for majority (90%) of the solutions, at least one
target has activity that exceed 1000. This difference in result
could be due to the presence of fewer targets that can effectively
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control the activity of mitochondrial ATP in the glucose-
stimulated insulin secretion network. In particular, there were
only two targets (4% of total targets) when perturbed individu-
ally. This is in contrast to the MAPK-PI3K network in which
64% of the targets can achieve the therapeutic goal when they
are perturbed alone. Hence, in comparison to the MAPK-PI3K

network, the LOEWE heuristic plays a limited role in the
glucose-stimulated insulin secretion network, resulting in
fewer solutions found, higher off-target effects and higher target
activities in the combinations.
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In Table 9, we note an over-representation of two targets that
have activities less than 100. They are inhibitors of reactions 7
and 10 which correspond to inhibitors of glyceraldehyde 3-

phosphate dehydrogenase and lactate dehydrogenase,
respectively. We explore the possibility of combining these two
targets to obtain combinations that have better target activity pro-
file. Indeed, when reactions 7 and 10 are inhibited at target activity
of 10 and 39.25, respectively, the desired therapeutic effect was
achieved with off-target effects of 2628.29. Hence, the solution sets
of MASCOT are useful as a guide for potential targets and target activities
to explore in creating new target combinations.

In addition, we perform literature curation to assess the biolog-
ical relevance of the solutions in Table 9. A search in PubMed using
the keywords ‘‘type 2 diabetes mellitus drug combinations” did not
yield any relevant target combinations for the glucose-
stimulated insulin secretion network. Hence, we perform further
curation by specifically looking for relevant literature pertaining to
the predicted combinations in Table 9. Although we did not find
any supporting evidence that combinations 5 and 6 have been per-
formed, successfully or otherwise, in experiments, their individual
components have shown efficacy in diabetes [37,40,50]. Hence,
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these combinations warrant further investigation as potential tar-
get combinations. We did not find any supporting evidence for the
remaining combinations. However, this does not necessarily imply
that these combinations are not useful for diabetes. Current
research may be focussed on examining other diabetes-related
pathways. Hence, these predicted combinations may not have been
explored yet. Additional research is necessary to confirm the rele-
vance of these combinations.

Effect of Parameters on Solution Set. In this final set of exper-
iments, we shall investigate the effects of various parameters on
the solution set of MASCOT using the MAPK-PI3K network.

Effect of the solution set size. We vary N : f5;10;25;40;50g. We
make the following observations from Fig. 6. The whiskers and
inter-quartile ranges of the off-target effects boxplot are observed
to increase as N increases. This implies that for smaller N, majority
of the solutions within the middle 50% of off-target effects have
off-target effects values that are closer with each other as com-
pared to those for larger N. This is expected as increased number
of solutions invariably results in a higher likelihood of encounter-
ing combinations with off-target effects that vary widely. Despite
the potential of variability in the off-target effects, the solution
 49
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set is relatively robust as the whiskers of the boxplot (which con-
tains the majority of the solutions) are relatively constant in the
range [0–20] when N is greater than 25. In addition, the increase
in N demanded longer execution time as more iterations are
required to identify the larger number of solutions.
Effect of combination size. Fig. 7 summarizes the effect of varying
combination size (S : f2;3;4;5;6g) on off-target effects, execution
time and the actual solution set size. We make the following obser-
vations. First, off-target effects increased with the size of the com-
bination. Incorporating additional targets into the combination
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was likely to cause perturbation of a larger number of downstream
nodes of these target. This inevitably increases off-target effects.
Second, the increase in combination size also resulted in a slight
increase in execution time. This is probably due to additional com-
putation required for the selection of additional targets and their
activities. Third, targets closer to the disease node are frequently
selected for the combinations. This is evident from the fact that
all combinations include either a ERK (or MEK) kinase inhibitor or
a ERK (or MEK) phosphatase activator. Fourth, there is a tendency
for less desirable targets (i.e., promoter of pro-cancer signals) such
as a drug activating the tyrosine kinase to be included in the com-
bination as S increased. Hence, it may be necessary to consider
additional rules such as exclusion of pro-cancer signal promoters
when generating combinations of larger sizes.

Effect of initial temperature. In this experiment, we examine the
effect of varying t0. Fig. 8 reports the results. Observe that there is
no significant changes in terms of execution time, actual solution
set size and off-target effects.

Effect of the number of iteration. Next, we investigate the effects
of varying imax. The effects on execution time and actual solution
set size that are observed in Fig. 9 are similar to those in Fig. 6. This
is because increasing imax increases the maximum number of iter-
ations for the simulated annealing, allowing a larger solution space
to be explored. Hence, more execution time is needed and the
actual solution set size is larger. The whiskers of the off-target
effects boxplot remain relatively constant in the range [0–20]. This
corresponds well with our previous observations in Fig. 6. Com-
pared to t0, the effect of varying imax is more pronounced. This is
because, in our design of the simulated annealing algorithm, we
have set t0 to be smaller than imax. Note that t0 and imax control
the outer- and inner-loop of the algorithm, respectively. For
instance, when t0 is set to 5, the maximum number of iterations
is 5 � 500 = 2500, whereas when imax is set to 5, the maximum
number of iterations is reduced further to 100x5 = 500.

Effect of �t ; �a, and kþ. Figs. 10 and 11 report the effect of �t . We
note an increase in the actual solution set size and corresponding
decrease in execution time as �t is increased. As �t is increased,
there is further relaxation of the condition for therapeutic effect
and this allows more candidates to be accepted. This could also
be the reason for an increase in the range of the whiskers of the
off-target effects boxplot when �t increased from 5 � 10�4 to
5 � 10�3 as there is a large increase in solution set size from 7 to
50. Note that although increasing �t results in a dramatic decrease
in execution time, this is at the expense of solutions moving fur-
ther away from the desired therapeutic effect. In contrast, we do
not observe any significant changes in terms of execution time,
actual solution set size and off-target effects when we vary �a
(Fig. 12) and kþ (Fig. 13).
6.3. Choice of parameter values

The aforementioned experiments demonstrate that several
parameters (e.g., t0; �a, and kþ) do not affect the execution time,
solution set size and off-target effects significantly. Hence, as a
general rule, these parameters can be configured as t0 = 100,
�a = 5% and kþ = 1.8. For the remaining parameters, the configura-
tion is largely dependent on a user’s goal. In particular, smaller val-
ues of �t yield predicted combinations that are closer to the desired
therapeutic effect whereas increasing imax increases exploration of
the solution space. A guideline for configuring imax is to use a lower
value (e.g., 250) to quickly search the domain space for candidate
combinations. In the event that insufficient candidates are
returned, then, a higher value (e.g., 500) can be set to increase
the exploration space. For example, if the goal is to explore 20 com-
binations where the desired therapeutic effect must be achieved
stringently, then a possible configuration of MASCOT would be
�t ¼ 0:5%, N = 20, S = 4 and imax ¼ 250.

7. Conclusions

In this work, we describe MASCOT, a generic framework for com-
bination therapy that predicts synergistic target combination
based on using simulated annealing. Specifically, it leverages on
two heuristics, namely, a machine learning-based target prioritiza-
tion and LOEWE heuristic from pharmacology. The former heuristic is
used for selecting appropriate targets when generating candidate
target combinations in the simulated annealing algorithm,
whereas the latter heuristic is used to select target activity in order
to ensure synergistic target interaction within the combinations.
Our results reveal that the heuristics indeed improve execution
time and off-target effects of the target combinations, when com-
pared to the state-of-the-art approaches. The solutions found using

MASCOT are also enriched with targets in known drug combinations
and found to be biologically relevant. Due to the generic and exten-
sible nature of MASCOT, further disease-specific constraints can
easily be added on it to improve the result quality with respect
to a specific disease. Furthermore, various ‘‘omics” data and drug
and disease information can be included as heuristics to find target
combinations that exclude combinations akin to monotherapies,
and that avoid including activators of pro-disease targets as part
of the combinations.

Note that MASCOT relies on the specification of the system of ODEs
for the input signaling network. Hence, the prediction result is
dependent on the accuracy of the given ODEs. The accuracy of the
prediction results can be further improved by using signaling net-
works that are experimental data-driven and context-specific. As
part of future work, we intend to leverage additional experimental
data (e.g., gene expression data), annotations (e.g., GO process
terms), and ontology to address issues of inherent noise in signal-
ing network. In particular, nodes annotated with the same GO pro-
cess terms are more likely to be located in the same pathway or in
pathways that crosstalk. Hence, these nodes are likely to transmit
signals to each other. The set of nodes found in protein or gene
databases (e.g., UniProt) that are annotated with the same GO pro-
cess terms as targets in the predicted combination may provide
an indication of the actual off-target effect due to the target com-
bination. Hence, the existing definition of off-target effects needs
to be enhanced to take into consideration such information.
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Appendix A. Proof for complexity analysis

A.1. Time complexity

In Algorithm 1, the PREPROCESSINPUT procedure performs several
tasks: (Task 1) convert reversible reactions to irreversible reac-
tions, (Task 2) identify individual drug targets, (Task 3) modify tar-
get reactions and (Task 4) finding ITA. In the worst case, Tasks 1, 2
and 3 require OðjEjÞ;OðjV jjEjÞ and OðmaxðjEj; jV jÞÞ time, respec-
tively, where MAX(�) is the maximum operator. MCSA, which is used
to find the ITA in Task 4, consists of the following steps: generate
random candidate solution (Oð1Þ); simulate target combination
effect using an ODE solver (OðjEjjujÞ [52]); estimate the therapeutic
and off-target effects (OðjV jjujÞ); and perform candidate accep-
tance test (Oð1Þ), where juj is the number of time points in the con-
centration–time series profile curve. Hence, the time complexity of
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each MCSA iteration is OððjV j þ jEjÞ � jujÞ. In the worst case, no val-
ues satisfying the desired therapeutic effect is found when the MCSA

terminates on completing all runs (t0 � imax iterations) resulting in
a time complexity of OðmaxðjEj; jV jÞ � t0 � imax � ðjV j þ jEjÞ � jujÞ to
obtain the ITA for all targets. The time complexity of PREPROCESSINPUT

can be further reduced to Oðt0 � imax � ðjV j þ jEjÞ � jujÞ.
In the ESA phase, in the worst case, ESA terminates on completing

all runs (t0 � imax iterations) without finding N solutions. Similar to
the MCSA, each ESA iteration consists of the following steps: (Task 5)
generate candidate solution, (Task 6) simulate combination effects
using an ODE solver, (Task 7) estimate combination effects and (Task
8) perform candidate acceptance test. Task 5 involves target prior-
itization heuristic for selecting the target. This heuristics accepts
higher prioritized targets with higher probability (Section 5.2). In
the worst case, the lowest prioritized target (y) from the set of indi-
vidual targets (T ) is always considered. y will be accepted if a ran-
domly generated number is lower than the selection probability of
y (spy). It takes about OðjT jÞ tries in order to accept the worst can-
didate. Hence, the complexity of generating the candidate solution
is OðjXjjT jÞ where jXj is the size of the candidate combination and
jT j is the size of the candidate target. Tasks 6, 7 and 8 take OðjEjjujÞ
[52], OðjV jjujÞ and Oð1Þ time, respectively. Since juj � jXj and
OðjEjÞ ¼ OðjT jÞ, the time complexity of ESA is
Oðt0 � imax � ðjV j þ jEjÞ � jujÞ time in the worst case. Thus, the over-
all worst time complexity of MASCOT is Oðt0 � imax � ðjV j þ jEjÞ � jujÞ.

A.2. Space complexity

In Algorithm 1, OðjV j þ jEjÞ is needed for storing the input sig-
naling network G and set of prioritized node rank W. Recall that
the PREPROCESSINPUT procedure performs several tasks: (Task 1) con-
vert reversible reactions to irreversible reactions, (Task 2) identify
individual drug targets, (Task 3) modify target reactions and (Task
4) finding ITA. In the worst case, Tasks 1, 2 and 3 require
Oð2jEjÞ;Oð2jV jjEjÞ and OðmaxðjEj; jV jÞÞ space, respectively, where

MAX(�) is the maximum operator. Recall that MCSA, which is used
to find the ITA in Task 4, consists of the following steps: generate
random candidate solution (Oð1Þ); simulate target combination
effect using an ODE solver (OðjV jjujÞ); estimate the therapeutic
and off-target effects (OðjV jjujÞ); and perform candidate accep-
tance test (Oð1Þ), where juj is the number of time points in the con-
centration–time series profile curve. Hence, the space complexity
of MCSA is OðjV jjujÞ. Hence, PREPROCESSINPUT has space complexity
OðjV jðjEj þ jujÞÞ.

In the ESA phase, in the worst case, ESA returns N solutions which
requires OðS � NÞ storage space. Similar to the MCSA, ESA consists of
the following steps: (Task 5) generate candidate solution (OðSÞ),
(Task 6) simulate combination effects using an ODE solver
(OðjV jjujÞ), (Task 7) estimate combination effects (OðjV jjujÞ) and
(Task 8) perform candidate acceptance test (Oð1Þ). Hence, the ESA

phase requires OðS � N þ jV jjujÞ space. Since in most applications,
we expect jV jjuj > S � N, the space complexity of the ESA phase can
be further reduced to OðjV jjuÞ. Thus, the overall worst space com-
plexity of MASCOT is OðjV jðjEj þ jujÞÞ.

A.3. Convergence analysis

The process of simulated annealing can be interpreted as the
change of state of an inhomogeneous Markov chain where the

state at the kth step is denoted as hk and Phk is its probability distri-
bution [35]. The convergence of simulated annealing is established
in [35] as follows: if the temperature is kept constant (i.e., tk ¼ t),
then the distribution of the state of the chain Phk tends to the equi-
librium distribution pðtÞ. If t ! 1, then pðtÞ tends to the zero-
temperature distribution pð1Þ. Hence, if the cooling schedule tends
to infinity (i.e., tk ! 1), Phk ‘‘follows” pðtkÞ which tends to pð1Þ. The
distribution of Phk converges to the zero-temperature distribution
and coincides with a global optimizer with probability one. For
simulated annealing algorithm on a continuous domain, the set
of global optimizers has no Lebesgue measure and would result
in a set of optimizers with null probability [35]. Note that MASCOT

algorithm performs simulated annealing on a system of ODEs where
the goal is to minimize the off-target effects and to ensure that the
therapeutic effect of the predicted combination achieves the
desired therapeutic effects. The system of ODEs are continuous func-
tions [64]. Hence, MASCOT is a simulated annealing algorithm that
runs on a continuous domain and can only find approximate solu-
tions in finite time according to [7]. The approximate global opti-
mizer is defined as follows [35] for a minimization problem:

Definition 5. Let U : H ! R be an optimization criterion where
H � RN is bounded, and pLeb be the standard Lebesgue measure.
Then h is an approximate global optimizer of U with value
imprecision � and residual domain a if
pLebfh0 2 H : Uðh0Þ < UðhÞ þ �g 6 apLebðHÞ where �P 0 and
a 2 ½0;1�.

Definition 5 holds with probability of at least r ¼ 1
1þ½ 1þd

�þ1þd�
t ½1a

1þd
�þd�1�1þd

d

[64] where t P 1 and d > 0. Further, for a bounded domain, Defini-
tion 5 holds with probability of at least r� kPhk � pðtÞkTV where
kPhk � pðtÞkTV is the distance between the distribution of Phk and
the target distribution pðtÞ and kPhk � pðtÞkTV decreases geometri-
cally to zero as k ! 1. Note that for MASCOT, the domain of the tar-
get activity is [0-1], but can easily be replaced by [0-w] where w is
a arbitrary large value (e.g., 105) in order to transform it to a
bounded domain.
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