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Abstract

Background: Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem
cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell
boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses
the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice.

Results: We propose to integrate an edge detector into a superpixel algorithm and customize the method for
multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel
algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to
cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with
“ground-truth” segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher.

Conclusion: Our segmentation framework is flexible and provides very good segmentations of multi-color muscle
fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in
mice with similar multi-color labels.
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Background
Cells can be genetically engineered with fluorescence
genes that are inherited when the cell divides, meaning
the descendents use the genes to continuously synthesize
fluorescent proteins. This allows a form of biology exper-
iment called “lineage tracing” to see the long-term impact
of specific populations of labelled cells. The labelled cells
can be bred into an animal from birth, can be injected,
transplanted, etc.
Snippert et al. [1] developed a 4-color “confetti” trans-

gene for labelling stem cells. The confetti transgene
exploits genetic recombination to achieve a random
choice of color (red, yellow, cyan, green) in each stem cell.
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When a stem cell is induced to divide (whether by natu-
ral turnover or by injury), each daughter cell expresses the
same color as its ancestor. This creates a patch of homo-
geneous color in the regenerated tissue. Regenerated cells
of different color must have originated from different
stem cells. Confetti fluorescence and other multi-color
cell labelling strategies are useful for tracking regeneration
in adult mice, for evaluating the potency of stem cells in
vivo, or for judging the effectiveness of stem cell therapies.
In this project we address the analysis of multi-color

stem cells after muscle regeneration. Skeletal muscle is a
highly regenerative tissue in which each mature muscle
cell is a long thin fiber with many nuclei. This muscle fiber
is surrounded by a basal lamina, which gives the mus-
cle fiber its firmness during contraction. Muscle-resident
stem cells, called satellite cells, are located between the
muscle fiber and the basal lamina. If the muscle fiber
is severely damaged, it will become necrotic and induce
an immune reaction. This activates the satellite cells,
which migrate to the injured area and divide into a set
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of myoblasts. The myoblasts each have one nucleus, but
upon differentiation they fuse together in a linear configu-
ration to generate a multi-nucleated myotube or myofiber.
The myoblasts can also fuse to pre-existing or partially-
damaged fibers [2]. Figure 1 shows a cross-section and a
lateral-section of regenerated muscle fibers from confetti-
fluorescent mice.
Cells with multiple fluorescent proteins are imaged

using multi-channel microscopy (such as confocal or two-
photon imaging). For example, the image datasets used
in our project include four channels: cyan, green, yellow
and red (Fig. 2). Each of the fluorescent proteins emit-
ting those colors was excited by a laser at its respective
excitation wavelength. The light emitted from the sample
contains autofluorescence, so the light is passed through
a band-pass filter specific for each fluorescent protein,
before detection with a camera. The resulting images
show which muscle fibers are positive for which fluores-
cent proteins. Because muscle fibers are multinucleated
cells, an overlay of the four colors can show muscle fibers
positive for more than one color.
To analyze the regeneration results, the images must be

segmented. A cursory glance at a composite color image
in Fig. 2e may lead to the conclusion that this segmen-
tation is similar to the segmentation of real-world color
images. However, our problem is different or more dif-
ficult in some ways as follows. In our images, there is
extensive contact or overlap between objects (squeezed
together), meaning that contour-closing (e.g., in snake-
or level sets-based methods) does not work very well
for segmentation. We also cannot re-use methods that
combine object recognition with segmentation unless we
develop domain-specific object models. In addition, many

of the boundaries are blurry; some of the objects are in
the process of fusing; and there is tremendous variation
in the fiber brightness. Using a conventional color dif-
ference measure may not be appropriate in our problem
since color similarity in multi-channel imaging is differ-
ent from color similarity in a normal spectrum of visible
light. Furthermore, the images have random noise and
non-random artifacts including optical aberration from
the imaging device; damaged tissue or fracture planes
during sample preparation; and ice crystals which cause
small empty holes in the image. The ice crystals often
have clear boundaries but they should be omitted from
the segmentation results. Finally, the four colors of the
confetti construct are in different locations within the
cell. Green is located in the nucleus, yellow and red are
in the cytosol and cyan is on the membrane. In mature
muscle fibers, the membrane becomes a sarcolemma with
many invaginations. As a result, cyan fluorescence can be
seen inside the muscle fibers as well as along the cell-cell
edges.
We propose a novel method called SLIC-MMED

(simple linear iterative clustering on multi-channel
microscopy with edge detection) which uses superpix-
els for the segmentation of muscle fibers in muli-channel
microscopy. A superpixel is a perceptual grouping of
neighboring pixels that aligns better with image edges
than a rectangular patch [3]. Superpixels are widely used
in numerous applications in computer vision including
image segmentation. Among existing superpixel genera-
tion methods [4], simple linear iterative clustering (SLIC)
[5] was chosen for our project because of its effectiveness,
scalability and speed. However, SLIC needs to bemodified
to adapt to our problem. Nuclei are orders of magnitude

a b

Fig. 1 A cross-section (a) and a lateral-section (b) of regenerated muscle fibers from confetti-fluorescent mice. A five-month-old male (a) and female
(b) mice were injected with 100 μg/g tamoxifen on 5 consecutive days to achieve transgene recombination. Ten days after the last tamoxifen
injection, muscle injury was induced by injecting the tibialis anterior with 50 μl 10 μM cardiotoxin. Sixteen days after injury mice were sacrificed, the
tibialis anterior was fixed and frozen, and 10 μm sections were cut. Scalebars are 50 μm
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Fig. 2 A multi-channel microscopy image of muscle fibers. (a) Cyan channel; (b) Green channel; (c) Yellow channel; (d) Red channel; (e) Composite
color image from all the four channels; (f) Composite color image from cyan, yellow and red channels after preprocessing. This section is from the
same muscle of the cross-section in Fig. 1a. Scalebars are 50 μm. Each channel is a 12-bit image of 1024 × 1024 pixels

smaller than mature muscle cells, but when colored green
they have a very strong color boundary. This difference
in the scale of color change (due to scale difference in
underlying objects) could confound the superpixel gen-
eration. So we first remove the nuclei. A simple method

for segmenting the nuclei turns out to be extremely accu-
rate by using domain-specific information (rounded or
ellipsoidal morphology, green color).
To make existing image processing algorithms useful for

our domain, we had to perform several modifications: (1)
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Fig. 3 Processing steps in the proposed framework

forking different channels to different methods, based on
an object model for nuclei, (2) introducing an enhanced
superpixel method named simple linear iterative clus-
tering on multi-channel microscopy with edge detection
(SLIC-MMED), and (3) developing a semi-automatic seg-
mentation framework based on superpixels that can pro-
duce very good results for our problem. We believe that
all three of these modifications will be useful for other
forms of multi-channel cell microscopy, for non-neuronal
eukaryotic cell types.

Methods
Overview of the framework
An overview of our framework is shown in Fig. 3. First,
each channel undergoes intensity normalization and noise
reduction filtering. Then the green channel is pro-
cessed to extract the nuclei. The remaining channels
(cyan, yellow and red) are used to generate superpix-
els according to our SLIC-MMED algorithm (Fig. 4).
Next, an automatic superpixel merging algorithm (Fig. 5)
is executed to merge a subset of the generated super-
pixels to form the muscle fibers. The superpixel gen-
eration and/or this superpixel merging step can be
performed repeatedly with different user-defined param-
eters until users are satisfied or until termination cri-
teria are reached. After that, the resulting superpixels
and merged regions can be further revised through a
user-friendly graphical user interface (GUI). Lastly, this
segmentation is combined with the nuclear segmenta-
tion to form the final result. In this section, we use the
dataset shown in Fig. 2 to describe our proposed frame-
work. The primary steps in our framework are detailed
below.

Preprocessing and nuclear segmentation
The first preprocessing is to normalize each channel to the
same range, e.g., [0, 255]. Another optional preprocessing
step is to apply a noise reduction filter, e.g., median filter,
to each channel in cases of noisy images. Figure 2f shows
an example of a composite color image from cyan, yellow
and red channels after preprocessing.
In microscopy, cell nuclei are often the easiest morpho-

logical features to identify (whether by eye or by algo-
rithm), and many microscopy protocols include nuclear
staining, or more recently, fluorescent proteins genetically
engineered for nuclear localization. Because each fluores-
cent tag corresponds to one (or at least one) channel, we
can analyze channels individually, based on this knowl-
edge of the underlying signal sources. In other words, we
can analyze the green channel for nucleus-like objects. By
using image thresholding and morphological techniques,
the nuclei in the dataset shown in Fig. 2 can be seg-
mented using only the green channel as illustrated in
Fig. 6.
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Fig. 4 Simple Linear Iterative Clustering on Multichannel Microscopy with Edge Detection (SLIC-MMED) Algorithm

SLIC-MMED for superpixel generation
The original SLIC algorithm operates on color images in
the CIELAB color space with one input parameter is K,
the desired number of superpixels. Each pixel is repre-
sented by a 5-dimensional feature vector, [ l, a, b, x, y]T ,
containing 3 color components and 2 pixel coordinates.
At the initialization step, K initial cluster centroids Ck =
[ lk , ak , bk , xk , yk]T are sampled on a regular grid with the
interval of S = √

N/K , where N is the number of pix-
els. To reduce the chance of centering a superpixel on an
edge or on a noisy pixel, each centroid is moved to the
lowest gradient position in a 3× 3 neighborhood. Next, in
the iteration step, each pixel is associated with its nearest
centroid. In order to speed up the algorithm (compared
with k-means clusturing), the size of the search space is
reduced to a region proportional to the superpixel size.
Here, for each cluster centroid Ck , only the pixels in the
2S × 2S region around Ck are evaluated, meaning that if
the distance from a pixel to Ck is less than the distance

from that pixel to its current associated centroid, then the
associated centroid will be changed to Ck . Once all the
pixels have been assigned to their nearest centroids, an
update process adjusts each centroid to be the mean fea-
ture vector of all the pixels belonging to the corresponding
cluster. In practice, repeating this iteration step 10 times
is sufficient for most images. Finally, a postprocessing step
assigns all disjoint pixels (if any) to nearby superpixels.
In SLIC, the distance D between two pixels i and j

is a combination of two distances, dc and ds, represent-
ing color proximity and spatial proximity, respectively, as
below:

dc =
√

(li − lj)2 + (ai − aj)2 + (bi − bj)2,

ds =
√

(xi − xj)2 + (yi − yj)2,

D =
√

(dc/m)2 + (ds/S)2,

(1)



Nguyen et al. BMC Systems Biology 2016, 10(Suppl 5):124 Page 44 of 63

Fig. 5 Superpixel Merging Algorithm

where the compactness m is used to to weight the relative
importance of color similarity versus spatial proximity.
Whenm is large, spatial proximity is more important, and
the resulting superpixels are more compact. In contrast, a
small value of m leads to superpixels that are less regular
in size and shape; however, since in this case color prox-
imity is more important, the resulting superpixels follow
the image boundaries more closely.
Since the input data in our project are multichannel

microscopy images, not real-world color images, the fea-
ture vector needs to be modified. Instead of using 3
CIELAB color components (l, a, b), we use each image
channel as a component of the feature vector. Since the
green channel represents only nuclei, it is discarded from
the feature vector and processed separately as described
in the previous subsection. In short, the feature vector
representing each pixel in our data is [ c, y, r, x, y]T which

consists of the pixel intensities in the 3 channels cyan,
yellow, red, and the pixel coordinates (x, y), respectively.
In the superpixel method benchmarking, boundary

recall is used to measure the fraction of the ground truth
edges falling within at least two pixels of a superpixel
boundary. A good superpixel segmentation should adhere
to object boundaries, meaning that it should produce a
high boundary recall. Although SLIC demonstrates very
good boundary recall performance for real-world color
images [4, 5], this is not the case for our datasets as shown
in Fig. 7c. To overcome these problems, we propose to
integrate an additional score de into the pixel distance
measure. de represents the presence of edges between two
pixels, suggesting the likelihood that an object bound-
ary falls between the two points. Before starting super-
pixel generation, an edge detection algorithm is executed
to compute a value pi for each pixel i, indicating its
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Fig. 6 Nuclear segmentation. (a) Green channel after preprocessing (scalebar is 50 μm); (b) After image thresholding; (c) Using morphological
techniques to remove noise; (d) Segmented nuclei (enlarged for detail)

probability of being on an edge (boundary). Then the dis-
tance de between two pixels i and j is calculated as the
maximum edge probability over all the pixels lying on the
line connecting pixel i and pixel j. The new distance is
calculated as below.

d′
c =

√
(ci − cj)2 + (yi − yj)2 + (ri − rj)2,

ds =
√

(xi − xj)2 + (yi − yj)2,
de = max

∀t∈line(i,j)
pt ,

D′ =
√(

d′
c/m

)2 + (ds/S)2 + α × (de)2,

(2)

A wide range of edge detection algorithms would be
appropriate for computing the edge probabilities pi, and
we chose a detector based on the photometric invariance
theory and tensor-based features [6]. Figure 7a shows an
edge map generated using that edge detector. Note that if
no edge detection were involved (i.e., if pi = 0 ∀i) then
the revised distance measure D′ (Eq. 2) would reduce to

the original SLIC distance measure D (Eq. 1). The new
algorithm is presented in Fig. 4.

Automatic superpixel merging
After superpixel generation, all the superpixels within
each muscle fiber need to be merged together to form
the muscle fiber boundary. The similarity measure used in
our method, to determine if two neighboring superpixels
should be merged, is the Chi-squared (χ2) histogram dis-
tance [7]. The χ2 distance between two histograms P and
Q is defined as

χ2(P,Q) = 1
2

∑
k

(Pk − Qk)
2

Pk + Qk
. (3)

We represent the intensity distribution in each channel
of each superpixel as a histogram and use the following
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Fig. 7 Superpixel generation using different algorithms. (a) Computed edge map. The segmentation results from (b) our method, SLIC-MMED;
(c) SLIC; (d) VCells.White arrows indicate poorly segmented superpixels

formula to measure the similarity distance DC(i, j)
between superpixels i and j,

DC(i, j) =√(
χ2(Hc

i ,Hc
j )

)2 +
(
χ2(Hy

i ,H
y
j )

)2 +
(
χ2(Hr

i ,Hr
j )

)2
,

(4)

where Hc,Hy,Hr are the superpixel histograms of chan-
nels cyan, yellow, and red, respectively.
In addition to DC(i, j), another measure called edge

strength is used for the superpixel merging decision. The
edge strength Eij between superpixels i and j is defined
as the average edge probability over all the pixels in
superpixel i having at least one neighbor belonging to
superpixel j. The DC and edge strength are then used in
a series of thresholds. If superpixels i and j have simi-
lar colors, it might be because they are part of the same
fiber, or it might be because they come from different
fibers that happen to have similar colors. Therefore, when-
ever two superpixels have smilar DC (the χ2 distance

is not greater than a threshold thres_dC), they can only
be merged if they have low edge strengths (their edge
strengths are not greater than a threshold thres_edge). In
addition, we use another predefined threshold thres_size
to avoid muscle fibers having unrealistic sizes which are
formed from over-merging. However, this size limitation
is not applied to superpixels representing “background”
(namely, black-colored superpixels with mean color inten-
sity below thres_bg).
Our iterative superpixel merging algorithm starts with

a calculation of the χ2 distances and the edge strengths
between each superpixel and its neighbors. Then the
method for merging superpixels is a series of thresholded
criteria as described in Fig. 5. The algorithm stops when
there are no more superpixels merged. Figure 8a shows a
result after this processing step.

Manual refinement
For challenging datasets, it is impossible to produce an
error-free segmentation. Errors from the automatic super-
pixel merging process include two types:



Nguyen et al. BMC Systems Biology 2016, 10(Suppl 5):124 Page 47 of 63

a b

c d

Fig. 8 Segmentation using superpixels. (a) Automatic superpixel grouping; (b) Example of manual refinement: yellow box - draw a curve to merge all
the regions along the curve, blue box - restore a superpixel to merge it with a neighboring region in another way; (c) Final result; (d) Ground truth

1. Over-merging: merging of superpixels from different
muscle fibers, or from a muscle fiber and neighboring
background/artifacts.

2. Under-merging: some neighboring superpixels from
the same muscle fiber have not been merged yet.

A manual refinement step is introduced to our frame-
work through a user-friendly GUI in order to fix the
superpixel merging errors (Fig. 8b). The main supported
operations include

• Drawing a freehand curve to merge all the
superpixels or regions along the curve.

• Restoring the original superpixels surrounding a
selected position to allow manually merging them in
another way.

If the superpixel generation produces a high boundary
recall, using these two operations can guarantee a very
good segmentation result (Fig. 8c).

After this manual refinement, the superpixel segmen-
tation is combined with the nuclear segmentation in a
postprocessing step to form the final segmentation result.

Results
Superpixel evaluation
We use two error metrics, boundary recall and under-
segmentation error, to evaluate our SLIC-MMED algo-
rithm and compare it with the original SLIC and another
advanced superpixel algorithm named VCells [8]. Bound-
ary recall is the fraction of ground truth edges that fall
within a certain distance d (d = 2 in our experiments) of
at least one superpixel boundary. A good superpixel seg-
mentation should produce a high boundary recall. Under-
segmentation error compares segment areas to measure
to what extend superpixels flood over the ground truth
segment borders. Details about the calculation of these
two measures can be found in [4].
We used the dataset in Fig. 2 for this evaluation. The

corresponding ground truth was created by one computer
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expert under the supervison of our muscle biology expert
(Fig. 8d). The compactness was chosen as 20 for all the
three algorithms. The edge weight α in Eq. 2 was 20 for
SLIC-MMED. The input image for the original SLIC and
VCells algorithms was the composite color image from
the cyan, yellow and red channels after preprocessing
(Fig. 2f).
Figure 9 shows the performance of the three super-

pixel algorithms, scored using boundary recall, under-
segmentation error and processing time (in seconds). As
can be seen, our proposed SLIC-MMED outperforms the
other two algorithms in term of superpixel quality. In term
of processing time, our algorithm is slower than the orig-
inal SLIC due to the extras processes, but is still very fast
(about 2–5 seconds for a 1024× 1024-pixel three-channel
image) and much faster than VCells. Algorithmic effi-
ciency is not a limiting factor in our context because the
slowest step of our pipeline, preparing tissue sections for
microscopy, is much slower than any of the image analysis
algorithms.
Figure 7 shows the superpixels generated when each

of the candidate algorithms was run on the same image
(using a moderate parameter value of 800 for the number
of superpixels). The superpixel shapes generated by SLIC-
MMED look less regular than those of the other two algo-
rithms due to the introduction of an edge map. However,
the superpixels created by SLIC-MMED adhere more
closely to the image boundaries, so they have virtually
no significant errors. Significant errors are annotated by
small white arrows on the images.

Segmentation evaluation
The final stage of evaluation considers the total semen-
tation accuracy. The methods SLIC and VCells provide
only superpixels, not segmentation, so they are not cov-
ered in this section. Our method, SLIC-MMED, merges
superpixels to create segmented regions, so the quality of
its segmentation is inherently related to the quality of its
superpixels. We assess the segmentation using an abso-
lute score, defined with respect to ground truth, called the
Dice similarity coefficient (DSC) [9]. The DSC measures
the spatial overlap between two segmentations, X and Y,
and is defined as

DSC = 2 |X ∩ Y |
|X| + |Y | , (5)

where |X| and |Y | are the number of pixels in X and
Y, respectively. It should be noted that Eq. 5 is for the
evaluation of one resulting segment. Our segmentation
problem is a multiple-object segmentation with multiple
fibers and other regions. We propose the median DSC
(medDSC) which is computed as in Eq. 6 to measure

a

b

c

Fig. 9 Comparison of different superpixel methods using different
measures: (a) Boundary recall; (b) Under-segmentation error;
(c) Processing time. All algorithms were run repeatedly with the
number of superpixels ranging from 100 to 2500 with a step size of
100. The computing platform was a 3.50GHz Intel Xeon CPU E3-1246
desktop computer with 32 GB RAM running Microsoft Windows 7
Professional 64-bit

the similarity between the segmentation result S and the
ground truth G.

medDSC = median
i=1,..,NG

(DSCi) ,

DSCi = 2
∣∣gi∩sf (i)

∣∣
|gi|+∣∣sf (i)

∣∣ ,
(6)

where NG and NS are the respective total number of seg-
ments in G and S, gi is one segment in G, and sf (i) with
f (i) ∈ [1,NS] is the corresponding segment in S having the
largest overlap with gi.
For the example data set (Fig. 2), we used SLIC-MMED

to generate 1500 superpixels (with compactness = 20 and
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α = 20). After the automatic superpixel merging step
(Fig. 8a), we manually refined the segmentation (Fig. 8b)
and got the final result as in Fig. 8c. The resultingmedDSC
was 0.92 for this dataset.
Figure 10 presents the final SLIC-MMED segmentation

results for the images from Fig. 1. After the superpixel
merging phase and prior to the refinement phase, the
scores were medDSC 0.72 and 0.67 for the cross-section
dataset and the lateral-section dataset, respectively. The
lower score for lateral sections reflects the extreme aspect
ratio (non-compactness) of the underlying objects. Fortu-
nately, the under-segmentation of a fiber into fiber seg-
ments is nearly instantaneous for manual refinement to
merge correctly. After the refinement phase, themedDSCs
were 0.93 and 0.95 for the cross-section dataset and the
lateral-section dataset, respectively. As recommended by
Zijdenbos et al. [10], a segmentation is considered good if
DSC > 0.70.
We also propose DSCX , where X is a number between

0 and 100, to measure the fraction of segments in the
ground truth are segmented with a DSC ≥ X/100. The
final segmentation in Fig. 8c has DSC75 of 0.78, meaning
that 78% of the segments were segmented with a DSC ≥
0.75. For the cross-section dataset and the lateral-section
dataset in Fig. 10, the scores were DSC75 0.93 and 0.91,
respectively.

Discussion and conclusion
In our experiments, the proposed method can correctly
segment muscle fibers in very heterogeneous sections
having both bright and dark regions, a wide range of
fiber sizes, homogeneous red or yellow but more irregu-
lar cyan segments in cytoplasm. The fact that the method
can handle a variety of cell sizes and morphologies in
these confetti-fluorescent images suggests that it may be

useful for analyzing confetti-fluorescent images in other
tissues.
With an accurate segmentation, we can count the num-

ber of muscle fibers that contain each of the confetti
colors. The method works well for even weakly fluo-
rescent areas, as in Figs. 1a and 10a. Using the same
segmentation, we also canmeasure the diameter and cross
sectional area for each fiber. In most labs, measuring
the diameter and cross-sectional area would require cut-
ting a set of adjacent tissue sections, which would then
undergo labor-intensive staining, followed by imaging and
registration of the adjacent sections, to provide a super-
positioning of the stained section and the confetti-labelled
section. Staining requires doubling the number of sections
because staining eliminates the endogenous fluorescence.
In this work we show it is possible to obtain segmentation
from the endogenous fluorescence, allowing us to skip the
costly process of staining.
In fluorescence microscopy, each fluorophore emits

light over a range of wavelengths (its emission spec-
trum), causing nearby colors to overlap. For example, the
emission spectrum of green overlaps with the emission
spectrum of yellow. It is for this reason that multi-color
labelling strategies have engineered the similar fluores-
cent proteins to have different sub-cellular localizations
(e.g., nuclear localization of the green and cytosolic local-
ization of the yellow). Localization allows the identity of
the label to be disambiguated. In our images, the green
signal bled into the yellow channel (see Fig. 2c). SLIC-
MMED includes explicit management of different sub-
cellular localizations, and this may be why we had no
segmentation errors due to green-yellow spectral overlap.
The observed colors arise from fluorescent protein

molecules that are diffusible in their compartment
(cytosol, membrane, or nucleus). The Brownian nature of

a b

Fig. 10 Segmentation results applying SLIC-MMED to the images in Fig. 1. The formats of each image channel of the data are (a) 8-bit 1024 × 1024
pixels and (b) 12-bit 512 × 512 pixels. Each segmentation is displayed on the composite color image from the cyan, yellow and red channels after
preprocessing
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diffusion suggests that color distribution might be nearly
uniform across the space of the relevant compartment. In
other words, the limit of molecular diffusion becomes the
boundary of the color, which we identify as the boundary
of the segmentation. Cell membranes are 2-dimensional
surfaces which can appear as 1-dimensional curves
when imaged from a cross-section. The cytosol and
nucleus of a cell are 3-dimensional compartments, which
appear as 2-dimensional continuous regions. Edge detec-
tion is a natural approach for analyzing 2-dimensional
membrane-targeted fluorescence, such as the cyan chan-
nel in our images. Meanwhile, superpixel-based region
detection methods are a natural approach for analyzing
3-dimensional compartments. If the spatial distribution of
the fluorescent proteins were punctate (0-dimensional) or
fibrillar (1-dimensional), then our method would be less
appropriate.
Our segmentation framework, SLIC-MMED, is a

“hybrid” method that combines the advantages of a
region-based clustering algorithm (SLIC) and an edge
detector through the integrated edge map. The intro-
duction of an user-friendly superpixel refinement module
provide flexibility for the framework. As long as the super-
pixel generation provides a high performance in boundary
recall, the framework provides very good segmentations.
Our experimental results show a high degree of agreement
with experts. In the final scoring, the differences between
different trials are also heavily dependent on the specific
dataset, the number of superpixels to be revised, and the
user’s expertise at performing themanual refinement step.
In future, we will intensively analyze the contribution of
automation to the effectiveness of the framework.
The algorithm is potentially applicable to other multi-

channel microscopy applications besides muscle. Mouse
transgenes with confetti, brainbow or other multi-
color stochastic labels have become extremely popular
[1] and the scientific community is rapidly generat-
ing multi-channel images that require analysis. Our
image analysis method is particularly valuable for such
applications.
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