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ABSTRACT

Target prioritization ranks molecules in biological networks
according to a score that seeks to identify molecules that
fulfill particular roles (e.g., drug targets). We study this
problem in the context of partial information (e.g., unknown
targets) and present Tapestry, a network-based approach
that prioritizes candidate targets in a given signaling net-
work with unknown targets by utilizing knowledge (target
characteristics) gained from curated targets in another set
of signaling networks. We consider both topological and dy-
namic features and use a weighted sum approach to examine
the relative influence of these two classes of features on the
prioritization results. Tapestry exploits a knowledge base
of characterization models and predictive topological features
of a set of signaling networks (candidate networks) with
curated targets. Then, given a signaling network G with
unknown targets, Tapestry identifies a candidate network
most similar to G and selects its characterization model
as prioritization model for computing a topological feature-
based rank of each candidate node in G. Next, a dynamic
feature-based rank is computed for these nodes by leveraging
the time-series curves of odes associated with the edges in
G. Finally, these two ranks are integrated and used for pri-
oritizing candidate targets. We experimentally study the
performance of Tapestry using signaling networks from
BioModels with real-world curated outcomes. Our results
demonstrate its effectiveness and superiority in comparison
to state-of-the-art approaches.
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1. INTRODUCTION
Systems biology models biological systems as networks of

interacting molecules. In particular, signaling networks are
useful in capturing signal flows that underly biological pro-
cesses such as growth and apoptosis. Hence, these networks
are increasingly used to analyze various characteristics of
biological systems such as prioritizing targets for gene an-
notation and drug discovery [7, 19]. Intuitively, a target is
typically an endogenous molecule such as a protein, a gene or
a nucleic acid sequence that affects the outcome of a disease
or a medical condition1. The target prioritization problem
aims to rank candidate targets according to their potential
of being a target based on some importance measures such
as gene expression level [7]. Ideally, for a given network, this
problem is best tackled when we have knowledge of known
targets, complete topological and dynamic (in the form of
concentration or flux measurements) information. However,
this is difficult to achieve in practice. Hence, in this paper
we study this problem in the context of partial information
(e.g., unknown targets).
Several approaches have been recently proposed in the

literature for target prioritization. They can be broadly
classified into network-oblivious and network-centric cate-
gories. Network-oblivious approaches prioritize candidate
targets using experimental data (e.g., gene expression [26])
and non-network features (e.g., gene structure and sequence
[44], sensitivity coefficient [39]). In contrast, network-centric
approaches (e.g., NetworkPrioritizer [19]) adopt a network
view of biological entities and perform in silico network-
based analysis to prioritize candidate targets. Unlike network-
oblivious approaches that treat the biological system as a
black box, network-centric approaches consider such system
as interactions of molecules. This enables us to capture the
complexity of these interactions and their system-level im-
pact during target prioritization. Hence, we advocate that
network-centric approaches are more appropriate for priori-
tizing candidate targets.
Recent network-centric target prioritization approaches

include lsa [15], GeneWanderer [22] and NetworkPriori-
tizer [19]. GeneWanderer is based on a random walk al-
gorithm and uses a score derived from the distance of a gene
to known disease genes for prioritization. The reliance on
known disease genes limits the usage of GeneWanderer to
networks associated to well-studied diseases such as cancer.
Moreover, the use of a single metric assumes that targets can

1
In pathogen-related diseases, the target can sometimes be endoge-

nous to the pathogen, instead of the host. In this paper, our focus is
on targets related to non-pathogen-related diseases.



be characterized well by one topological feature, which may
not necessarily be true [9]. In contrast, lsa and NetworkPri-
oritizer prioritize candidate targets using network dynamics
and multiple topological features, respectively. In particu-
lar, NetworkPrioritizer provides flexibility on the choice of
topological features, feature weights, and rank aggregation
method for the prioritization task. However, the need to
manually configure these settings makes it less palatable to
end users as it requires a keen understanding of the underly-
ing network and target characteristics. Note that end users
may not necessarily be equipped with such in-depth knowl-
edge of the underlying network.

Moreover, GeneWanderer and NetworkPrioritizer only
leverage topological features of the network ignoring its dy-
namic characteristics, even though the latter is an important
aspect of biological systems and an integral part of compre-
hending signaling networks. In our recent work [8] (referred
to as Pani), we took the first step to investigate the role
of dynamics in target prioritization by examining two topo-
logical features and one dynamic feature called profile shape
similarity distance (pssd2) for prioritization in curated sig-
naling networks. We observed that superior prioritization
results can be generated when the interplay of dynamic and
topological features is exploited, suggesting that network dy-
namics may also play an important role for this problem.

In this paper, we proposeTapestry (TArgetPrioritization
using nEtwork STRucture and dYnamics), a network-centric
approach that prioritizes candidate targets in signaling net-
works with respect to a disease node using both topological
and dynamic features. It is built on top of Tenet, a target
characterization3 technique [9]. Specifically, Tenet deploys
a support vector machine (svm)-based strategy to learn of-
fline the set of predictive topological features for character-
izing known curated targets in a set of publicly-available
signaling networks (referred to as candidate networks) and
generates a set of characterization models based on these fea-
tures. Then given a disease-related signaling network with
unknown targets (referred to as unseen network) and the set
of characterization models generated by Tenet, Tapestry
prioritizes its nodes (ranks nodes based on some criteria)
with respect to a disease node by leveraging a characteriza-
tion model and network dynamics. Specifically, it selects the
“best” characterization model it should adopt as its prioriti-
zation model from the collection of characterization models
of the candidate networks. A prioritization score (referred
to as putative target score) is then derived from the selected
model and the dynamics of the unseen network. Subse-
quently, we use this score to prioritize candidate targets.
Remark. Each of the topological features and dynamic

features, that Tapestry considers, encapsulates a different
possible “reason” why a candidate node might be important
and influential in a signaling network (related to the dis-
ease). Tapestry seeks a context-dependent selector for the
feature set that is related to node importance. In particu-
lar, the Tapestry algorithm searches for the most similar
network that has known feature weightings. These known
weightings suggest a weighting of features for that context,

2
Briefly, it identifies the most relevant upstream regulators by assess-

ing the similarity of the concentration-time series profiles of a target
and its upstream regulators.
3
Target characterization is the process of defining the characteristics

of the targets and is useful in drug design for these targets and in the
identification of novel targets that share similar characteristics with
known targets.
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Figure 1: MAPK-PI3K network adapted from [17].

and they exemplify how a node can be influential in that
type of network based on that particular feature set.
In summary, this paper makes the following contributions:

• In Section 3, we present a novel disease node-driven
target prioritization problem that aims to rank can-
didate targets in a disease-related signaling network
based on a specific disease node instead of ranking
them independent of any disease.

• In Section 4, we present a novel network-centric tar-
get prioritization algorithm called Tapestry, that uti-
lizes a machine learning-based target characterization
framework (Tenet) and statistical analysis to address
the disease node-driven target prioritization problem
in a signaling network with unknown targets.

• In Section 5, we conduct a detailed empirical study on
real signaling networks and drug target data to demon-
strate the effectiveness and superiority of Tapestry

compared to the state-of-the-art generic network-centric
target prioritization techniques.

2. PRELIMINARIES
In this section, we first describe the essential graphical

representation of signaling networks and ordinary differen-
tial equation (ode) models. Next, we briefly give an overview
of Tenet [9], a machine learning-based target characteriza-
tion framework on which the Tapestry algorithm is built.

2.1 Graph Model of Signaling Networks
A biological signaling network describes the interaction

between molecular species involved in the network. The in-
teraction takes the form of biochemical reaction and pro-
cesses. An example of such biochemical reaction is the acti-
vation of erk into phosphorylated erk (erkpp) by its kinase,
phosphorylated mek in Figure 1. Graphically, this reaction
is typically represented as a directed hyperedge connecting
one set of nodes (e.g., {erk and mek}) to another set (e.g.,
{erkpp}) [21, 36]. Hence, a signaling network is naturally
represented as a directed hypergraph G = (V,E). Analy-
sis of directed hypergraphs is generally more complex than
graphs and many graph algorithms cannot be used directly
on hypergraphs. Hence, hypergraphs are often transformed
into graphs containing simple edges for analysis using tech-
niques such as bipartite and substrate graph representa-
tion [21] (e.g., Figure 1). In this paper, we convert signaling
network hypergraphs into bipartite graphs by adopting the



method in [13]. We chose the bipartite graph representation
as it retains the original structural information of the hy-
pergraphs [21]4. Note that the transformed bipartite graph
is used to compute the topological features.

In these graphs, the edges can be further annotated with
dynamic information associated with the biochemical pro-
cess. This generally takes the form of ordinary differen-
tial equation (ode). The resulting ode model describes the
system’s behaviour over time by using mass-action kinetics
to model the production and consumption rates of differ-
ent molecular species [1]. These models are typically con-
structed by translating prior knowledge of production and
consumption rate of different molecular species into differen-
tial equations. The determination of these reaction kinetics
can be technically challenging. Hence, a large proportion of
these kinetics are usually estimated using parameter estima-
tion techniques [34]. Despite this uncertainty, these under-
determined ode systems can still model real, observable bio-
logical behaviour, providing valuable means for quantitative
study. Although ode models are still small in size now, they
are expected to grow in the future and become an important
and accepted way of representing biological knowledge [1].
In this paper, we use hypergraphs containing odes (Table 3)
for simulation to obtain concentration-time series profiles5

of nodes. These profiles are used to compute a dynamic fea-
ture (pssd [8]) which is subsequently used for disease node-
driven target prioritization.

For clarity, we refer to a node as a candidate target if,
when perturbed, it modulates the activity of a specific dis-
ease node. A disease node is a protein that is involved (or
hypothesized to be involved) in some disease-causing process
(e.g., phosphorylated erk in the mapk-pi3k network [17]).
Given a signaling network G = (V,E) and a disease node
x ∈ V , let the set of nodes having a path leading to x be
denoted as Vx ⊆ V . Then, the set of candidate target nodes
in G relevant to x is denoted Tx ⊆ Vx.

2.2 Target Characterization using TENET
Tenet [9] is a network-centric, in silico target characteri-

zation system. Tenet uses signaling networks having known
targets from publicly-available signaling network reposito-
ries (e.g., BioModels [24]) to learn for each network, a set
of topological features that are predictive of targets and a
characterization model that can be used to generate topo-
logical feature-based (tfb) rankings of targets. It generates
different characterization models for different networks, as it
is unlikely for one characterization model to generalize the
characteristics of known targets in all networks due to the
complexity and diversity of signaling networks.
Specifically, given a signaling network and a disease node,

Tenet identifies nodes that are likely regulators (nodes po-
sitioned upstream) of the disease node based on the inter-
connections of nodes. Then, it extracts a set of topological
features (Table 1) of these candidates from the network and
ranks each candidate target based on each topological fea-
ture. Next, it partitions the preprocessed data into a train-
ing set, a model selection (validation) set and a test set.
An svm-based algorithm is deployed to learn the set of pre-
dictive topological features that best characterizes known
targets of the network and a characterization model based

4
The “dummy” nodes generated due to this transformation are not

ranked during target prioritization.
5
Plots of concentration against time.

Table 1: Target features. Topological and dynamic
features are denoted as T and D, respectively.
Symbol Description Type
θu Degree centrality of node u. The in, out and

total degree centralities are denoted as θin(u),
θout(u) and θtotal(u), respectively.

T

αu Eigenvector centrality of node u. T
βu Closeness centrality of node u. T
γu Eccentricity centrality of node u. T
δu Betweenness centrality of node u. T
πu Bridging coefficient of node u. T
ζu Bridging centrality of node u. T
κu Clustering coefficient of node u. κundir(u),

κin(u), κout(u), κcyc(u) and κmid(u) denotes
undirected, in, out, cycle and middleman
clustering coefficients, respectively.

T

µu Proximity prestige of node u. T
ωu Target downstream effect of node u [8]. T
Φ(u,v) Profile shape similarity distance (pssd) be-

tween nodes u and v [8].
D

on these features. The svm algorithm uses structural feature
selection and weighted misclassification cost to improve the
performance of the final characterization model by address-
ing the issues of irrelevant features, class membership uncer-
tainty and imbalanced data set. It uses a set of known tar-
gets curated from literature and clinical trials repositories,
such as [25] as the benchmark for learning. The curation
process is detailed in [9]. Table 2 shows the characterization
models of a set of signaling networks generated by Tenet.
Details of these networks are given in Table 3.

3. DISEASE NODE-DRIVEN TARGET

PRIORITIZATION PROBLEM
Recall that target prioritization is the process of ranking

candidate targets according to some criteria (e.g., sensitiv-
ity, gene expression level) so that a target node has higher
priority if the disease node is more sensitive to its changes. It
is potentially useful in helping to plan experiments since re-
sources are limited and experiments can be costly and time-
intensive. This is especially true in drug development [28].
Specifically, our goal is to generate a putative target score
for ranking nodes in a given signaling network G with un-
known targets (referred to as unseen network) according to
their ability in modulating a disease node of G.

Definition 1. Given an unseen signaling network G =
(V,E) and a disease node x ∈ V , the disease node-driven

target prioritization problem assigns a target rank ru
for each node u ∈ V . For any two nodes u, v ∈ V , u is
more likely to achieve better modulation of x compared to v

if ru < rv.

State-of-the-art network-centric target prioritization ap-
proaches generate target ranks differently. Some approaches
(e.g., local sensitivity analysis (lsa) [15]) use a single score
(e.g., sensitivity coefficient) to assign target ranks whereas
others (e.g., NetworkPrioritizer [19]) use an aggregated score
(e.g., Weighted Borda Fuse). We adopt the latter approach
by using an aggregated score referred to as putative target
score. Specifically, we use 16 topological and one dynamic
features6 as listed in Table 1 to compute this score. These
features are selected based on their role in measuring rela-
tive importance of a node in a signaling network. The formal

6
Although it is desirable to study a variety of dynamic features, we

did not find any suitable ones besides pssd that we proposed in [8].



Table 2: Characterization models of a set of networks generated by TENET.
mapk-pi3k

(I1)
glucose-stimulated
insulin secretion (I2)

endomesoderm gene regula-
tory (I3)

glucose metabolism
(I4)

Linear Kernel C 2−0.4 210 20.8 211.2

Target Misclassification Cost C+ 0.5 0.9 0.7 0.8

Feature Selection Approach♯ bse hybrid bse bse

Features Selected δ,π,θin,
θout

π,β,κcyc, κundir δ,ζ,π,β,κcyc,γ,α,κin,κmid,
µ,κout,θout,ω,θtotal,κundir

ζ,β,κcyc,γ,α,κin,κmid,
µ,ω,κout,θtotal,κundir

♯ bse=backward stepwise elimination. Hybrid involves filtering using statistical test results followed by bse

Table 3: Signaling networks used in the experiments.
Network notation I0 I1 I2 I3 I4
Data set (BioModel
ID)

Ras activation
(0000000161)

mapk-pi3k

(0000000146)
glucose-stimulated insulin
secretion (0000000239)

endomesoderm gene reg-
ulatory (0000000235)

glucose metabolism
(0000000244)

Disease node Rasgtppm erkpp atpmitochondrial Protein_E_Endo16 acetate

No. of nodes 46 36 59 622 47
No. of hyperedges 43 34 45 778 109
No. (%) of targets 5 (10.9%) 9 (25%) 6 (10.2%) 206 (33.1%) 16 (34%)

definitions as well as motivation for selecting these features
are given in [10]. Note that in signaling networks, an aggre-
gated score may be more appropriate as targets are generally
characterized by multiple features [9].

Definition 2. Given an unseen network G = (V,E) and
a disease node x ∈ V , the putative target score of a node
vi ∈ V is defined as

̺vi =







̟1
Dvi

maxu∈V (Du)
+̟2

Tvi

maxu∈V (Tu)
if R(vi, x) is true,

0 otherwise

where Dvi and Tvi are dynamic and topological feature-

based ranks of vi, respectively; ̟1+̟2 = 1; max(.) is the
maximum operator and R(u,v) is a boolean function that
returns true when there is a path from u to v and false when
otherwise.

The nodes in V are ranked based on decreasing ̺ such
that for two nodes vi, vj ∈ V , vi is ranked higher than
vj if ̺vi > ̺vj . Observe that in contrast to state-of-the-
art network-centric approaches, our proposed score consid-
ers both topological and dynamic features. Dynamics play
an important role in understanding biological systems [33].
Although topological features are found related to dynamics
and modularity in biological networks [31], they are unable
to explain the temporal aspects of the networks [33]. Hence
topology and dynamics complement each other by provid-
ing different perspectives of the biological system. We use
a weighted sum approach for computing the score to in-
corporate the relative influence of topological and dynamic
features in prioritizing candidate targets.
Additionally, existing network-centric approaches are gen-

erally disease node-unaware. That is, they rank all nodes
in the given network regardless of the fact that some nodes
may not influence the activity of the disease node. In con-
trast, we address this limitation by ensuring that the ranking
based on putative target score is disease node-driven.
Remark. It is worth mentioning that the target prioriti-

zation problem differs from the target characterization prob-
lem embodied by Tenet in the following key way. The goal
of the latter is to identify a set of characteristics (i.e., fea-
tures such as betweenness centrality) that characterizes the
known targets in a given signaling network. In contrast,
the goal of the target prioritization problem that Tapestry
seeks to address is to rank nodes (candidate targets) of a

given signaling network. This input network does not nec-
essarily have known targets.

4. THE TAPESTRY ALGORITHM
The Tapestry algorithm is designed to address the dis-

ease node-driven target prioritization problem by leveraging
the output of Tenet. Given an unseen network G and a
disease node x, the key idea deployed here is to select the
characterization model of a signaling network with known
targets that best matches G as its prioritization model and
then use it to rank the nodes (candidate targets) in G with
respect to x. Specifically, the ranking exploits topological
and dynamic network features of G to obtain the topolog-
ical features-based (tfb) and dynamic feature-based (dfb)
ranks, respectively. Note that the input signaling hyper-
graph is transformed to a bipartite graph in Tenet for
computing the topological features. We use the original hy-
pergraph for computing pssd in Tapestry. Algorithm 1
outlines the Tapestry algorithm. It comprises of three key
phases, namely, the preprocessing phase (Line 1), the pri-
oritization model selection phase (Line 2), and the target
ranking phase (Line 3). We shall elaborate on them in turn.
Phase 1: Preprocessing. In a signaling network, cer-

tain nodes may not influence the disease node and these
nodes can be removed from further processing. Hence, in
this phase Tapestry traverses G in a depth-first manner
and uses a reachability rule based on the transitive closure
of G to identify potential candidate nodes by eliminating
nodes in G that cannot reach x. The reader may refer to [8]
for details related to this rule.
Phase 2: Prioritization model selection. In this

phase, Tapestry leverages on Tenet to select an appro-
priate prioritization model that is most suited for G from
the collection of known characterization models of a set of
signaling networks L with known targets. Recall that such
collection of characterization models is generated by Tenet.
Intuitively, it selects the characterization model of the net-
work that is most similar to G as its prioritization model
for target prioritization. Due to space constraints, we only
provide an overview here. Detailed description of the find-

BestMatchedNetwork procedure is given in [10].
Observe that the key challenge in this phase is to measure

the network similarity distance D(G,L) between a pair of
signaling networks, G and L, based on similarity of their
target features. Hence, given an unseen network G and two



Algorithm 1 Algorithm Tapestry

Require: Unseen network G and disease node xG; set of candi-
date networks L, their disease nodes x, and known targets T ,
relaxation parameter pr (optional), weights learning parame-
ter tw (optional) and weight range step-size stepw (optional).

Ensure: |Vcan| × |N | matrix of Tapestry-prioritized node P.
1: Vcan ←filterCandidate(G, xG)
2: Gbest ←findBestMatchedNetwork(G, xG,L, x, T, pr)
3: P ←prioritizeTargets(G, xG, Vcan,L, x,Gbest,tw, stepw)

candidate networks Li ∈ L and Lj ∈ L, we consider G is
more similar to Li if the topological and dynamic feature
(Table 1) distributions of the candidate targets in G is more
similar to that of the targets in Li, across all network fea-
tures being considered. We use the Wilcoxon Rank-Sum
(Wilcoxon) and Kolmogorov-Smirnov (ks) statistical mea-
sures7 for assessing distribution similarity. These tests yield
a set of p-values which can be aggregated into a combined
p-value using Fisher’s inverse χ2 method (Fisher) [30] or
Stouffer’s method (Stouffer). A smaller combined p-value
implies a closer feature distribution similarity. In Tapestry,
we rank the networks according to increasing combined p-
value and use this rank as the network similarity distance.
Since there are recent efforts to determine similarity be-

tween networks by employing network structure-based mea-
sures [4, 32], at first glance a keen reader may question the
justification behind proposing yet another network similar-
ity measure for target prioritization. Specifically, graphlet
degree distribution (gdd) [32] and NetSimile [4] both use
local measures to determine network similarity. A common
theme that runs through these approaches is their generality
and applicability to other types of networks such as social
networks. Hence, why we cannot adopt these techniques to
realize this phase? We provide an answer to this question
by highlighting the differences between the aforementioned
network similarity measure deployed in Tapestry and these
existing measures.

• First, the network similarity problems are defined dif-
ferently in existing work. In gdd [32], two networks are
deemed similar when they share similar graphlet degree
distribution that is measured using the gdd agreement
(topology-based feature); in NetSimile, network sim-
ilarity is measured using a feature vector consisting
of seven topological features. In contrast, we define
similarity as the likelihood of two network sharing tar-
gets with similar characteristics. The characteristics
are measured using topological and dynamic features.

• Second, gdd is applicable only to undirected networks
due to the definition of the graphlet patterns. Hence,
gdd is not suitable for signaling networks.

• Third, we consider a wider variety of network features
inclusive of both topological and dynamic features. Al-
though gdd uses a large number of graphlet patterns,
it does not consider dynamic features. Similarly, Net-

Simile uses only seven topological features8.

• Lastly, gdd and NetSimile are generic techniques.
That is, they are not designed to exploit domain-specific

7
The Wilcoxon and ks tests are nonparametric and are suitable for

features with distribution that are unknown a priori.
8
The NetSimile feature vector consists of degree, clustering coeffi-

cient, average number of two-hop neighbours, average clustering coef-
ficient, number of edges in a node’s egonet, number of outgoing edges
from the egonet and number of neighbours of the egonet.

Algorithm 2 Procedure prioritizeTargets

Require: Unseen network G, its disease node xG and candidate
targets Vcan; set of candidate networks L and their disease
nodes x, best matched network Gbest, weights learning pa-
rameter for auroc tw(auroc) (optional), weights learning pa-

rameter for aupr tw(aupr) (optional) and weight range step-

size stepw (optional).
Ensure: |Vcan| × |N | matrix of Tapestry-prioritized node P.
1: tw(auroc), tw(aupr), stepw ←init(tw(auroc), tw(aupr), stepw)

2: for iteration i=1 to |L| do
3: YL[i] ←filterCandidate(Li,xL[i])

4: SL[i] ←getTopologicalRank(Li,Li,YL[i])

5: DL[i] ←getDynamicsRank(Li,xL[i],YL[i])

6: for iteration j=1 to 10
stepw

do

7: ρL[i] ←getPutativeTargetScore(Li,DL[i],SL[i],j ×

stepw, 1− j × stepw)
8: PL[i] ←rank(ρL[i])

9: rocL[i] ←rocAnalysis(PL[i],getKnownTargets(Li))

10: auprL[i] ←auprAnalysis(PL[i],getKnownTargets(Li))
11: if rocL[i] ≥ tw(auroc) and auprL[i] ≥ tw(aupr) then

12: WL[i] ←appendToWeightList(j × stepw)
13: end if
14: end for
15: end for
16: S ←getTopologicalRank(G,Gbest, Vcan)
17: D ←getDynamicsRank(G, x, Vcan)
18: Wbest ←getWeightList(W ,Gbest)
19: for iteration i=1 to |Wbest| do
20: ρi ←getPutativeTargetScore(G,D,S,Wbest[i],1 −

Wbest[i])

21: Pi ←rank(ρi)
22: end for

knowledge (e.g., knowledge of disease nodes in a sig-
naling network) to find similar networks, although such
knowledge may yield interesting insights that are unique
to specific problems, paving way to solutions that are
more effective. In contrast, our similarity measure is
“target-aware” and is designed specifically for signal-
ing networks to address the disease node-driven target
prioritization problem.

Detailed empirical study related to the superiority of our
network similarity distance computation technique in com-
parison to the aforementioned state-of-the-art approaches is
reported in [10] and is orthogonal to this work. Certainly,
any other superior target-aware signaling network similarity
computation technique can be seamlessly integrated to our
Tapestry framework. Note that the choice of the network
similarity computation technique affects our selection of best
matched network and hence the ranking of the targets. The
Tapestry framework allows a comparison of different com-
putation technique to identify the best technique for the
purpose of target prioritization. Details of such comparison
are available in [10].
Based on the aforementioned network similarity distance

measure, the best matched network Gbest ∈ L of G is selected
as follows. Given an unseen network G and its disease node
xG, a set of candidate networks L with their known targets
and characterization models (e.g., Table 2), and an optional
relaxation parameter9 pr, first it learns the type of features
(topological or dynamic) and the method for combining p-
values (Fisher or Stouffer) that are the most relevant for

9
An optional parameter for relaxing the criteria for filtering out dis-

similar networks.



finding Gbest. Next, values of predictive topological fea-
tures is extracted for G. Then, for each pair of (G,Li), the
Wilcoxon and ks tests are performed for each of these fea-
tures and the p-values obtained are combined. Finally, the
candidate networks with combined p-values greater than or
equal to pt are ordered according to decreasing combined
p-values. The top-rank network is selected as Gbest. Subse-
quently, we use the characterization model of Gbest as the
prioritization model in the next phase.
Phase 3: Candidate target ranking. In this phase

(Algorithm 2), Tapestry first performs weight learning to
explore appropriate weights (in the range of 0 to 1) to assign
to the topological feature-based (tfb) (Line 4) and dynamic
feature-based (dfb) (Line 5) ranks using the candidate net-
works. In particular, Tapestry computes the putative tar-
get scores using different weight allocation (Lines 7- 8), then
performs roc and aupr analysis on the rankings (Lines 9-
10). Those weights resulting in auroc and aupr greater
than or equal to the pre-specified thresholds10 tw(auroc) and
tw(aupr) are stored in a weight array W (Line 12).
Next, it performs target ranking. The tfb ranks of the

unseen network are generated using Gbest (Line 16) and
dfb (pssd) ranks are obtained by exploiting the time-series
curves of ordinary differential equations (odes) associated
with the edges in G (Line 17). Briefly, pssd computes the
distance between the time-series curve of each node and the
disease node using a measure derived from z-normalized dy-
namic time warping (dtw) [20] where a smaller dtw value
implies greater similarity between two time-series curves.
The relevant list of weight (denoted as Wbest) for the best
matched network is retrieved from W . Finally, for each
weight in Wbest, the putative target score is computed and
used for producing a prioritized rank list Pi (Lines 20-21).

Theorem 1. The worst-case time complexity of Tapestry

is O((|L|+ 1)((|VL[i]|+ |EL[i]|)
2 + G(Xall) + |ϕL[i]||VL[i]|) +

H(G,L)) where H(·) and G(·) are the worst time complexity
of the given network similarity ranking approach (Phase 2)
and the feature extraction function; Xall is the set of fea-
tures; |VL[i]| and |EL[i]| are number of nodes and edges of Li

(the ith network in L), respectively; and |ϕL[i]| is the number
of time points in the time series of Li.

Proof. For the filterCandidate procedure, the con-
version of the input signaling network G = (V,E) to a bi-
partite graph Gbi = (Vbi, Ebi) takes O(|Vbi|+ |Ebi|) time. In
directed acyclic graph (dag) conversion, O(|Vbi|+|Ebi|) time
is required for finding strongly connected components (scc,
see Figure 1) using Tarjan’s algorithm. In the worst case, the
signaling network is a complete directed graph and conver-
sion to a dag takes O(|Vbi|

2+ |Ebi|) time since |Vbi| < |Vbi|
2.

In the indexing of the dag graph Gdag = (Vdag, Edag), the
depth-first traversal requires O(|Vdag| + |Edag|) time while
computing the set of nodes that can reach x takes O(|Vdag|)
time. Hence, filterCandidate algorithm takes O(|Vbi|

2 +
|Ebi|) time since |Vbi| = |V | + |E|, |Ebi| =

∑

(U,W )∈E(|U | +

|W |) and (|Vbi|+ |Ebi|) ≥ (|Vdag|+ |Edag|).
The time complexity of the findBestMatchedNetwork

procedure (denoted as H(·)) depends on the algorithm that
is used for network similarity ranking. In Tapestry, our

10
auroc in the range of [0.7, 0.8] and [0.8, 0.9] indicate acceptable

and excellent performances, respectively [18]. We set tw(auroc) and
tw(aupr) to 0.8 to ensure excellent performance of the prioritization
model.

proposed similarity computation approach has complexity
of O(|L|(|Xall|G(Xall)+ |A|(|L| − 1)(|VL[i]||VL[j]|)

2)) time in
the worst case, where Xall is the set of network features,
|VL[i]| is the number of nodes of the ith network in L and
|A| is the number of variants [10].
In Algorithm 2, filterCandidate; getPutativeTar-

getScore; Rank; rocAnalysis; auprAnalysis; append-
ToWeightList and getWeightList procedures require
O(|Vbi,L[i]|

2 + |Ebi,L[i]|); O(|VL[i]|); O(|VL[i]|log(|VL[i]|));

O(|VL[i]|
2) [14]; O(|VL[i]|

2); O(1) and O(1) time, respec-
tively, where |Vbi,L[i]| and |Ebi,L[i]| are the number of nodes

and edges of the bipartite graph of Li (the i
th network in L)

and |VL[i]| is the number of nodes in the Li. In getTopo-

logicalRank procedure, feature extraction takes G(Xall);
generation of the tfb scores takes O(|ν|) [5] where ν is the
number of support vectors (in the worst case, |ν| = |VL[i]|);
and ranking using heapsort takes O(|VL[i]|log(|VL[i]|)) time
[35]. Hence, the time complexity of getTopologicalRank

is G(Xall) + O(|VL[i]|log(|VL[i]|)). In getDynamicsRank

procedure, in the worst case, O(|ϕL[i]||VL[i]|) time is needed
for Z-normalization, for performing profile inversion, and for
dtw computation using fastDTW [38], where |ϕL[i]| is the
number of points in the time-series profile of Li. The heap-
sort used for ranking in the rank procedure takes
O(|VL[i]|log(|VL[i]|)) time. Hence, the time complexity of
getTopologicalRank isO(|ϕL[i]||VL[i]|+|VL[i]|log(|VL[i]|)).
Taken together, the time complexity of Algorithm 2 isO((|L|+
1)(|Vbi,L[i]|

2+|Ebi,L[i]|+|VL[i]|log(|VL[i]|)+G(Xall)+|ϕL[i]||VL[i]|)).

This can be further reduced toO((|L|+1)((|VL[i]|+|EL[i]|)
2+

G(Xall) + |ϕL[i]||VL[i]|)) since the signaling network is a sin-
gle strongly connected component in the worst case and
O(|Ebi,L[i]|)=O(|Vbi,L[i]|

2) and |Vbi,L[i]| = |VL[i]|+ |EL[i]|.
Hence, theTapestry algorithm requiresO((|L|+1)((|VL[i]|+

|EL[i]|)
2 + G(Xall) + |ϕL[i]||VL[i]|) +H(G,L)) time.

5. PERFORMANCE STUDY
Tapestry is implemented using Java. In this section, we

investigate the performance of this algorithm. The experi-
ments are performed on a computer system using a 64-bit
operating system with 8gb ram and a dual core processor
running at 3.60GHz.

5.1 Experimental Setup
Datasets. We use an unseen network (I0) and four can-

didate networks (I1 to I4) for our experiments as shown in
Table 3. Recall that Tapestry selects the candidate net-
work with the most similar target features as that of the
unseen network as the best matched network. Hence, the
pool of networks used as candidate networks affect the final
choice of the best matched network and the ranking of the
target genes. Clearly, a larger and varied pool of candidate
networks (with details of curated targets) allows comparison
to be made across a wider spectrum of networks in order to
identify a best matched network. Unfortunately, such candi-
date network pool is currently unavailable in the literature.
Consequently, we created a pool of candidate networks by
performing manual target curation from a large volume of
biomedical literature in order to identify known targets of
signaling networks for validating our experimental results.
We restricted this pool to 5 networks as manual curation
is time-intensive. Observe that the largest network stud-
ied here comprises of 622 nodes. Although larger signal-
ing networks are desirable, to the best of our knowledge,
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Figure 2: Effect of varying the weights of TFB and
DFB on prioritization ranks for candidate networks
(I1 to I4) and the unseen network (I0). For I0, we
use the prioritization model of the best matched net-
work (selected using AUROC-based model selection
method as described in [10]).

no publicly-available large signaling networks (e.g., human
cancer signaling network [12]) contain dynamic information
of all edges (odes).

The curated targets of the unseen network I0 (Ras ac-

tivation network) are egfrpm, activated egfr, Ca, Rasgtppm
and Rasgdppm [3, 29]. The curated targets of the candidate
networks are given in [10]. Note that in our experimental
study we assume that the targets of I0 are unknown.
Hence, these targets are used only to validate the quality
of target prioritization by Tapestry and existing network-
centric target prioritization approaches.

Network-centric target prioritization approaches.
We compareTapestry with several state-of-the-art network-
centric target prioritization approaches, namely, random pri-
oritization, local sensitivity analysis (lsa) [15], NetworkPri-
oritizer (wbf and wasf) [19] and Pani [8]. In random pri-
oritization, the nodes were randomly assigned a rank in the
range [1–|V |] where |V | is the number of nodes in the signal-
ing network and we assume that no ranking ties are present.
lsa was performed using Copasi [37] with the following con-
figuration: {task=sensitivities; subtask=time series; func-
tion=all variables of the model; and variable=all parameter
values}. We consider both Weighted Borda Fuse (wbf) and
Weighted AddScore Fuse (wasf) in NetworkPrioritizer and
consider all features provided. Note that uniform weights
were used for rank aggregation since we do not have prior
knowledge of the best weights or features to consider. The
weights allocation in Pani are set according to [8].
Performance metrics. In an ideal situation, the perfor-

mance of the target prioritization tools should be measured
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Figure 3: Performance of different target prioritiza-
tion approaches. Top: normalized ranks of targets
(shorter histograms imply higher rank), center: AU-
ROC and AUPR, bottom: runtime performance.

as the closeness of the predicted ranks and a set of bench-
mark ranks for a given disease-related signaling network.
However, to the best of our knowledge, such benchmark
ranks are not publicly available. Hence, we resort to us-
ing auroc or aupr measure which provides us an idea of
whether known targets are ranked higher than non-targets
in general. Specifically, in our experiments, we prioritize
the candidate targets in the Ras activation network (un-
seen network) using Tapestry and other state-of-the-art
prioritization tools.
Prioritization Model. We select the characterization

model of the glucose metabolism network (I4) as the pri-
oritization model as Phase 2 of Tapestry identifies it as
best matched network11 of I0 (detailed in [10]). Note that it
may seem that the Ras activation network to be most sim-
ilar to the MAPK-PI3K network (I1) as both are implicated in
cancer and share several common nodes such as Ras. How-
ever, when considering target feature-based network simi-
larity, this may not necessarily be true as the similarity is
affected by the target sets and the topological layouts of the
networks instead of disease or functional similarity.

5.2 Experimental Results
Weight settings by TAPESTRY. The Tapestry al-

gorithm (Phase 3) uses a weighted sum score of dfb ranks
(pssd) and tfb ranks (topological features) (denoted as ̟1

and ̟2, respectively) to compute a putative target score
for prioritizing candidate targets (Definition 2). Hence, the
weights ̟1 and ̟2 invariably affect the prioritization re-
sults. In this set of experiments, we vary these weights
to examine the impact of including pssd as a feature on
the prioritization results. The weight parameters ̟1 and
̟2 are set such that ̟1 + ̟2 = 1 and ̟1, ̟2 ∈ [0 − 1].
Hence, prioritization is based on pssd alone when ̟1 = 1
and on topological features alone when ̟2 = 1. The range
of weights we tested in shown in Figure 2. In the candi-
date networks (Figure 2, I1 to I4), we observe a decreasing
trend and setting ̟1 less than or equals to 0.3 yielded au-

roc greater than or equals to 0.8. Except for I2, the rest

11
The exact network similarity ranking of I1 to I4 with respect to I0

is I4 ≻ I1 ≻ I2 ≻ I3 where I4 is the most similar network to I0.



Table 4: Ranks and normalized ranks of candidate nodes in I0 using different approaches.
No. Node id Curated TAPESTRY PANI Random LSA WBF WASF

target Rank Norm.
rank

Rank Norm.
rank

Rank Norm.
rank

Rank Norm.
rank

Rank Norm.
rank

Rank Norm.
rank

1 Rasgtp_Golgi_gm No 9 0.22 34 0.85 39 0.85 34 0.81 2 0.07 3 0.08
2 egf_ec No 3 0.07 18 0.45 26 0.57 42 1 27 1 36 0.95
3 capricyt No 35 0.85 37 0.93 40 0.87 39 0.93 27 1 30 0.79
4 serca No 40 0.98 7 0.18 30 0.65 36 0.86 27 1 34 0.89
5 pippm No 21 0.51 12 0.3 31 0.67 3 0.07 25 0.93 29 0.76
6 pipm No 25 0.61 9 0.23 5 0.11 37 0.88 27 1 38 1
7 Shcpm No 5 0.12 40 1 2 0.04 7 0.17 21 0.78 23 0.61
8 Cacapri_pmpm No 32 0.78 31 0.78 22 0.48 20 0.48 10 0.37 15 0.39
9 RactCa No 33 0.80 36 0.9 42 0.91 8 0.19 26 0.96 28 0.74
10 Shc_starpm No 1 0.02 21 0.53 34 0.74 29 0.69 9 0.33 10 0.26
11 egfrpm Yes 3 0.07 12 0.3 15 0.33 6 0.14 27 1 36 0.95
12 plc_actpm No 39 0.95 3 0.08 9 0.20 32 0.76 11 0.41 12 0.32
13 Rasgtp_palcyt No 19 0.46 38 0.95 19 0.41 26 0.62 7 0.26 9 0.24
14 plcpm No 20 0.49 37 0.93 13 0.28 15 0.36 23 0.85 27 0.71
15 pip2pm No 23 0.56 19 0.48 6 0.13 30 0.71 22 0.81 25 0.66
16 Activated egfrpm Yes 4 0.10 35 0.88 44 0.96 27 0.64 8 0.30 6 0.16
17 ca buffercyt Yes 10 0.24 18 0.45 3 0.07 25 0.60 3 0.11 2 0.05
18 Ract No 37 0.90 32 0.8 28 0.61 5 0.12 26 0.96 28 0.74
19 Rinh No 37 0.90 25 0.63 43 0.93 21 0.5 26 0.96 28 0.74
20 RinhCa No 33 0.80 20 0.5 4 0.09 35 0.83 26 0.96 28 0.74
21 ip3 No 12 0.29 4 0.1 29 0.63 22 0.52 5 0.19 7 0.18
22 Rasgdp_Golgigm No 14 0.34 23 0.58 12 0.26 33 0.79 6 0.22 5 0.13
23 Ca_Rasgrp_gmgm No 31 0.76 13 0.33 18 0.39 13 0.31 15 0.56 21 0.55
24 dag_gmgm No 11 0.27 15 0.38 41 0.89 31 0.74 16 0.59 13 0.34
25 Rasgrp_daggm No 30 0.73 33 0.83 35 0.76 19 0.45 14 0.52 19 0.5
26 Cacapricyt No 24 0.59 16 0.4 32 0.70 18 0.43 12 0.44 17 0.45
27 dagpm No 29 0.71 26 0.65 20 0.43 11 0.26 27 1 37 0.97
28 Rasgtp_depalcyt No 18 0.44 17 0.43 1 0.02 12 0.29 6 0.22 8 0.21
29 Rasgdp_depalcyt No 17 0.41 24 0.6 37 0.80 14 0.33 13 0.48 11 0.29
30 Rasgdp_palcyt No 17 0.41 25 0.63 14 0.30 16 0.38 13 0.48 11 0.29
31 Ca_plcecyt No 22 0.54 10 0.25 10 0.22 28 0.67 19 0.70 22 0.58
32 Ras_Caplcegm No 26 0.63 34 0.85 33 0.72 42 1 17 0.63 18 0.47
33 pip2_gmgm No 34 0.83 27 0.68 46 1 42 1 27 1 32 0.84
34 ererMembrane No 41 1 28 0.7 11 0.24 27 0.64 24 0.89 14 0.37
35 Caer No 16 0.39 30 0.75 17 0.37 24 0.57 24 0.89 14 0.37
36 Soscyt No 6 0.15 6 0.15 8 0.17 17 0.40 27 1 31 0.82
37 Grb2cyt No 7 0.17 5 0.13 27 0.59 23 0.55 27 1 31 0.82
38 plcecyt No 38 0.93 1 0.03 45 0.98 41 0.98 27 1 33 0.87
39 buffercyt No 36 0.88 2 0.05 24 0.52 2 0.05 27 1 35 0.92
40 ca buffercyt No 36 0.88 8 0.2 21 0.46 9 0.21 27 1 35 0.92
41 SosGrb2cyt No 2 0.05 11 0.28 38 0.83 27 0.64 25 0.93 20 0.53
42 sgspm No 8 0.20 22 0.55 25 0.54 38 0.90 7 0.26 16 0.42
43 Rasgtppm Yes 13 0.32 14 0.35 23 0.5 4 0.10 1 0.04 1 0.03
44 Rasgdppm Yes 15 0.37 25 0.63 36 0.78 40 0.95 4 0.15 4 0.11
45 Rasgrpcyt No 27 0.66 29 0.73 16 0.35 1 0.02 20 0.74 26 0.68
46 CaRasgrp1cyt No 28 0.68 39 0.98 7 0.15 10 0.24 18 0.67 24 0.63

of the networks had the best auroc when ̟1 = 0.1. Sim-
ilar results is observed for the aupr. The results suggest
that tfb ranks play a more important role in target priori-
tization compared to dfb ranks, although inclusion of dfb

ranks was observed to improve the prioritization results. In
the unseen network (Figure 2, I0), there is also a downward
trend. In particular, the best auroc and aupr are 0.849
(̟1 = 0.3) and 0.464 (̟1 = 0), respectively. Interestingly,
the range of ̟1 ([0–0.5]) yielding an auroc greater than or
equals to 0.8 correspond to that of I4, the best matched net-
work. Although the best weight setting differs for different
networks, the aforementioned bound on the weight setting
(based on auroc) serves as a good value for an unseen net-
work. Hence, in our experiments we consider two variants
of Tapestry by setting ̟1 = 0 and ̟1 = 0.3.

Comparison with state-of-the-art. We compare
Tapestry with the state-of-the-art target prioritization ap-
proaches. We denote the Tapestry variant with ̟1 set to x

asTapestryx. We compare the performance in terms of au-
roc and aupr, relevance of top-ranked nodes in Tapestry

that were missed by other approaches and those that were
ranked top in other approaches but missed by Tapestry.
Figure 3 reports the performance results. We first examine
the performance in terms of auroc and aupr. Observe that
both Tapestry0 and Tapestry0.3 outperform all the other
approaches in terms of auroc and Tapestry0 is ranked
second in terms of aupr (Figure 3, center).
When we examined the ranks given to known targets (Fig-

ure 3, top), Tapestry0.3 is the only approach that ranked
all known targets in the top-50% ranked nodes. The actual
ranks are given in Table 4. Other approaches such as wbf

and wasf miss certain targets (egfr_pm, Ca and Rasgdp_pm)
in their top-50% ranked nodes12. We further examine if
nodes given high ranks in Tapestry but low ranks in other
approaches were biologically relevant. In particular, we are
interested in nodes that differ significantly in ranks predicted

12
Note that for the random technique, we expect 50% of the known

targets to be predicted correctly. Two targets ((egfr_pm and Ca) out of
five were found in the top-50% ranked nodes and Rasgtp_pm is actually
found in the 50th percentile. This correlates well with the expected
result for the random technique.



Table 5: Nodes that are ranked significantly differ-
ent by different approaches.

No. Node id Ranked high in Ranked low in
1 Rasgtp_Golgigm Tapestry, wasf, wbf lsa, Random, Pani
2 egfec Tapestry, Random,

Pani

wasf, wbf, lsa

3 serca Pani Tapestry, wasf,
wbf, lsa, Random

4 pipm Random Tapestry, wasf,
wbf, lsa, Pani

5 Shcpm Tapestry, wasf, lsa,
Random

wbf, Pani

6 Shc_starpm Tapestry, wasf, wbf lsa, Random, Pani
7 egfrpm Tapestry, lsa, Ran-

dom, Pani
wasf, wbf

8 plc_actpm wasf, wbf, Random,
Pani

Tapestry, lsa

9 Activated egfrpm Tapestry lsa, Random, Pani
10 RinhCa Random Tapestry, wasf,

wbf, lsa, Pani
11 dag_gmgm Tapestry, wasf,

wbf, lsa, Pani
Random

12 ererMembrane wasf, Random, Pani Tapestry, wbf, lsa
13 Soscyt Tapestry, lsa, Ran-

dom, Pani
wasf, wbf

14 Grb2cyt Tapestry, lsa, Ran-
dom, Pani

wasf, wbf

15 plcecyt Pani Tapestry, wasf,
wbf, lsa, Random

16 buffercyt lsa, Pani Tapestry, wasf,
wbf, Random

17 ca buffercyt lsa, Pani Tapestry, wasf,
wbf, Random

18 SosGrb2cyt Tapestry, wasf,
Pani

wbf, lsa, Random

19 sgspm Tapestry, wasf,
wbf, Random, Pani

lsa

20 Rasgdppm Tapestry, wasf,
wbf, Random, Pani

lsa

21 Rasgrpcyt lsa Pani, wasf, wbf,
Random, Tapestry

by Tapestry as compared to other approaches. We define
such nodes as those having differences of normalized ranks
greater or equal to 0.5. Note that we use the normalized
ranks instead of the actual ranks for comparison as each ap-
proaches gave a different range of node ranks. Hence for a
fair comparison, normalization is performed on the ranks for
each approach using the formula:

normalized rank =
maxRank − rank

maxRank
(1)

where maxRank is the maximum rank in the range assigned
to the nodes by the approach. The nodes that are given
significantly different ranks are given in Table 5.

Twelve nodes are ranked high by Tapestry and given
low ranks in at least one state-of-the-art approaches (shaded
rows in Table 4). Among these 12 nodes, 3 correspond to
known curated targets. For the remaining, Shcpm, Shc_starpm,
Soscyt, Grb2cyt, SosGrb2cyt and sgspm (complex of Shc_starpm
and SosGrb2cyt) are nodes implicated in the complex for-
mation of the Sos/Grb2 complex whose translocation to the
plasma membrane is found to trigger the activation of Ras
[42]. In addition, Topham and Prescott have also discovered
the regulation of Ras activation by dag kinase ζ through
a novel mechanism that controls the local accumulation of
dag [41]. egf is also known to activate the egf receptor
which then triggers a cascade of activity involving other
adaptor proteins such as Grb2 and Shc leading to Ras activa-
tion [23]. A study by Apolloni and colleagues on H-ras and
K-ras reveals that palmoitolylated H-ras, but not K-ras,

traffics to the plasma membrane via the Golgi complex [2].
This suggests that interaction with Golgi is crucial for cer-
tain form of Ras and Rasgtp_Golgigm is a potential target
for activation of Ras at the plasma membrane.
We performed a similar analysis for nodes (9 nodes in all)

ranked low by Tapestry and given high ranks in at least
one state-of-the-art approaches (shaded rows in Table 5).
Among the nodes, serca, RinhCa, buffercyt and ca buffercyt
are implicated in calcium induced Ras activation [11]. In
addition, plcg was found to activate Ras on the Golgi ap-
paratus via Rasgrp1 [6]. Note, however, that most studies
find plc (including plce) as effectors of Ras signaling in-
stead of regulators of Ras activation [16,40,43]. We did not
find evidence supporting the role of the remaining nodes in
the activation of Ras. Hence, nodes prioritized by Tapestry

are biologically relevant and many of these are missed by at
least one state-of-the-art approaches.
Runtime performance. Lastly, we study the runtime

performance of Tapestry. We observe that Tapestry has
moderate runtime compared to other approaches (Figure 3).

6. RELATED WORK
Since network-centric target prioritization using data ana-

lytics techniques is still in its infancy, there are only few work
in the literature such as lsa [15], NetworkPrioritizer [19],
and Pani [8] that attempt to address this challenging prob-
lem. Tapestry differs from lsa [15] and NetworkPriori-
tizer [19] in two key ways. First, Tapestry considers both
topological and dynamic features for target prioritization.
In contrast, lsa and NetworkPrioritizer only considers net-
work dynamics and topology, respectively. Although the
dynamic feature (pssd) we consider only improve the pri-
oritization results modestly, it highlights the fact that net-
work dynamics may be important for target prioritization
and should not be ignored. Second, Tapestry makes use of
insights about characteristics of known targets in signaling
networks whereas lsa and NetworkPrioritizer do not. Such
insights can lead to better results (e.g., better auroc).
Tapestry differs from our previously proposed target pri-

oritization technique called Pani [8] in the following key
ways. First, we select a more comprehensive collection of
sixteen topological features (instead of two) in order to en-
hance the quality of target prioritization. Second, Tapestry
exploits a novel strategy to choose an appropriate prior-
itization model (obtained using a machine learning-based
technique) that is subsequently leveraged to select weight
settings for topological features. Third, the weight alloca-
tion of topological features are automatically determined in
Tapestry using the prioritization model unlike Pani which
burdens users with the task of weight selection.

7. CONCLUSIONS & FUTURE WORK
In this paper, we present Tapestry, a network feature-

based target prioritization approach for signaling networks.
It is built on top of a target characterization module called
Tenet. Given a signaling network G with unknown targets
and a disease node, it first preprocesses G to filter candidate
nodes that are likely regulators of the disease node. Then,
it selects the best prioritization model from Tenet for G

by using a network similarity-based approach, which ranks
the set of candidate networks based on their similarity to
G with respect to their target features. Next, the selected



prioritization model is used to generate a tfb rank of the
nodes in G which is integrated with their dfb rank using
a weighted-sum approach to produce a final prioritization
rank for each candidate target. Our experimental results
show that Tapestry can produce superior quality results.

As part of future work, we would like to investigate a set
of disease nodes in order to prioritize targets instead of a sin-
gle disease node. In our study, the impact of the dynamic
feature (pssd) on prioritization results appears to be mod-
erate compared to topological features. This does not neces-
sarily undermine the importance of dynamic features since
we study significantly larger number of topological features
and the relative importance of the features can be affected
by both the choice of the features as well as the number of
features studied. Hence, it would be worthwhile to extend
this study to include more dynamic features.
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