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Abstract

Motivation: Target characterization for a biochemical network is a heuristic evaluation process that

produces a characterization model that may aid in predicting the suitability of each molecule for

drug targeting. These approaches are typically used in drug research to identify novel potential

targets using insights from known targets. Traditional approaches that characterize targets based

on their molecular characteristics and biological function require extensive experimental study of

each protein and are infeasible for evaluating larger networks with poorly understood proteins.

Moreover, they fail to exploit network connectivity information which is now available from

systems biology methods. Adopting a network-based approach by characterizing targets using

network features provides greater insights that complement these traditional techniques. To this

end, we present TENET (Target charactErization using NEtwork Topology), a network-based

approach that characterizes known targets in signalling networks using topological features.

Results: TENET first computes a set of topological features and then leverages a support vector

machine-based approach to identify predictive topological features that characterizes known

targets. A characterization model is generated and it specifies which topological features are

important for discriminating the targets and how these features should be combined to quantify

the likelihood of a node being a target. We empirically study the performance of TENET from a wide

variety of aspects, using several signalling networks from BioModels with real-world curated out-

comes. Results demonstrate its effectiveness and superiority in comparison to state-of-the-art

approaches.

Availability and implementation: Our software is available freely for non-commercial purposes

from: https://sites.google.com/site/cosbyntu/softwares/tenet

Contact: hechua@ntu.edu.sg or assourav@ntu.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Complex intra- and inter-cellular signalling drives various biological

processes, such as growth, proliferation and apoptosis within

systems. In systems biology, these molecular interactions are

typically modelled as signalling networks (Klamt et al., 2009) that

provide a holistic view of the various interactions between different

molecular players in the system. As signalling networks become

an increasingly acceptable way for representing biological systems,

various network-based computational techniques have been

developed to analyze these networks with the goal of
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answering biological needs, such as target characterization (Chua

et al., 2014) and target discovery (Yang et al., 2008). In this article,

we focus on the target characterization problem for signalling

networks.

Target characterization identifies characteristics (e.g. topological

features) that distinguishes targets (i.e. nodes) from other nodes in

the network. These characteristics can be summarized as models

which we refer to as characterization models. Traditionally, targets

are characterized based on their molecular characteristics [e.g. struc-

ture and binding sites of targets (Maira et al., 2008)] and biological

function [e.g. regulation of apoptosis (Yan et al., 2013)]. These trad-

itional approaches focus primarily on the target alone and are oblivi-

ous to the presence of other interacting molecules in the system.

However, understanding how a target interacts with other molecules

in a biological system may provide valuable and holistic insights for

superior target characterization. For example, the degree centrality

of a target may be leveraged to assess potential toxicity of targets as

high degree nodes tend to be involved in essential protein–protein

interactions (He et al., 2006) and are potentially toxic as a result. In

particular, network-based target characterization techniques can ex-

ploit such topological features for superior characterization of

targets.

Recently, there have been increasing efforts toward devising net-

work-based target characterization techniques (Hwang et al., 2008;

Zhang et al., 2010; McDermott et al., 2012). These methods focus

on using topological features to characterize targets of protein–

protein interaction (PPI) networks. Specifically, McDermott et al.

(2012) performed characterization of targets in protein co-

abundance networks [The protein co-abundance networks are

essentially protein–protein interaction (PPI) networks constructed by

identifying highly differentially regulated proteins from proteomics

data using specific filters.] using several topological features such as

degree centrality. Although this study suggests that multiple topo-

logical features can be combined for superior target characteriza-

tion, it did not explore how these topological features should be

combined towards this goal. In contrast, Hwang et al. (2008) con-

cluded that bridging centrality is useful in identifying targets in PPI

networks. However, the complexity and diversity of biological

networks make target characterization using a single feature chal-

lenging as in some networks the chosen feature may perform poorly.

Indeed, Chua et al. (2014) showed that bridging centrality performs

well in the MAPK-PI3K network, but not in the glucose metabolism

network. Zhang et al. (2010) proposed the use of machine learning

techniques such as support vector machines (SVM) and logistic regres-

sion for characterizing known targets in a manually curated human

PPI network using 15 topological features. In contrast to McDermott

et al. (2012), their goal was to identify topological characteristics of

drug targets in general, instead of for specific diseases. However,

characterizing targets in general assumes that targets of different dis-

eases share similar target characteristics, which may not always be

true. Indeed, as we shall see in Section 3, known targets in signalling

networks tend to be characterized by different sets of topological

features. Consequently, target characterization based on individual

disease-specific networks may yield better characterization that is

specific to the disease.

A common thread running through the aforementioned target

characterization techniques is their focus on PPI networks.

Surprisingly, similar systematic study in curated signalling networks

has been lacking in the literature. Compared to signalling networks,

PPI networks may contain many false-positive PPI in the sense that al-

though these proteins can truly physically bind they may never do so

inside cells due to different localization or they are not

simultaneously expressed. Furthermore, PPI networks are static. That

is, the edges in PPI networks are undirected; there is neither flow of

information nor mass between nodes. Hence, they lack of know-

ledge of the underlying mechanism (i.e. actual signal flow) causing

the disease. As network quality directly affects the results of net-

work-based target characterization, the aforementioned limitations

of PPI networks may adversely impact the search for superior charac-

teristics of targets. Signalling networks, however, model the dy-

namic interaction of the biological systems and present an attractive

alternative to PPI networks.

In our recent work (Chua et al., 2014), we took the first step to

demonstrate how signalling networks can be effectively leveraged to

identify topological features that are discriminative of targets using

the Wilcoxon test. However, similar to McDermott et al. (2012),

this work does not shed any insight on a predictive model to com-

bine these features for identifying potential targets. In this article,

we address this limitation by presenting TENET (Target

charactErization using NEtwork Topology), a network-based ap-

proach that characterizes known targets in signalling networks using

topological features. Specifically, we use an SVM-based approach to

identify the set of topological features (referred to as predictive topo-

logical features) that characterizes known targets and to generate a

characterization model using these features. The model specifies

which topological features are important for discriminating the tar-

gets and how these features should be combined to produce a quan-

titative score that identifies the likelihood of a node being a target.

In particular, TENET uses feature selection to select predictive topo-

logical features and weighted misclassification cost (WMC) to handle

SVM training issues such as noisy labels and imbalanced data. Our

empirical study on four real-world curated signalling networks dem-

onstrates the effectiveness and superiority of TENET.

2 Materials and methods

2.1 Terminology
A biological signalling network can be modelled as a directed hyper-

graph G ¼ ðV;EÞ (Klamt et al., 2009) where the nodes V represent

molecules (e.g. proteins) and the hyperedges E represent biochemical

reactions and processes. A hyperedge connects one node set U to an-

other W, where U;W � V. For instance, in the activation of ERK, the

set U in the hyperedge consists of ERK and its kinase, phosphorylated

MEK whereas W contains the phosphorylated ERK (ERKPP). Analysis of

directed hypergraphs is generally more complex than graphs and

many graph algorithms cannot be used directly on hypergraphs.

Hence, they are often transformed into graphs containing simple

edges for analysis. Methods (e.g. bipartite and substrate graph repre-

sentation) exist for such transformation (Klamt et al., 2009). In this

article, we use the bipartite graph representation as it retains the ori-

ginal information of the hypergraph (Klamt et al., 2009). Signalling

networks generally contain characteristics such as feedback and

feedforward loops, which are common in complex regulatory con-

trol (Kwon et al., 2008). These loops in turn give rise to graph char-

acteristics, such as strongly connected components (SCC).

The activity of nodes in the signalling network is generally gov-

erned by complex interconnectivity of various nodes in the same net-

work. We refer to a node as a candidate target if when perturbed, it

modulates the activity of a specific node (referred to as output

node). An output node is a protein that is either involved in some

biological processes which may be deregulated, resulting in mani-

festation of a disease, or be of interest due to its potential role in the

disease. For instance, in the MAPK-PI3K network (Hatakeyama et al.,
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2003) that is often implicated in cancer, ERKPP can be considered as

an output node due to its role in proliferation. Given a signalling

network G ¼ ðV;EÞ and an output node x 2 V, let the set of nodes

having a path leading to x be denoted as Vx � V. Then, the set of

candidate target nodes in G relevant to x is denoted as Tx � Vx.

Network-based analysis can be applied to signalling networks to

study the characteristics and properties of these networks. In this

article, we examine a total of 16 topological features that are sum-

marized in Table 1. These features are selected based on their role in

measuring relative importance of a node in a signalling network.

The formal definitions as well as motivation for selecting these fea-

tures are given in Chua et al. (2014) (also detailed in Supplementary

Material S1.1).

2.2 Topological feature-based target characterization
Intuitively, the goal of topological feature-based target characteriza-

tion is to use a set of predictive topological features to characterize

known targets in a network. Hence, the topological feature-

based target characterization problem can be formulated as a super-

vised learning problem. In a supervised learning problem, a training

set fhxi; f ðxiÞig is given where f ðxiÞ is the predictor of xi and the

goal is to learn some target function f : X! Y which can be applied

to predict unseen data w. The problem can be subdivided into two

categories: regression when the predictor yields a continuous out-

come and classification when the outcome is discrete. A regression

problem can be converted into a binary classification problem by

specifying a threshold h and assigning xi with f greater than h to one

class and the remaining to the other class. We advocate that the

topological feature-based target characterization problem is best

represented as a regression problem. In this problem, we are inter-

ested in finding out how likely one node is a target relative to

another node based on a set of predictive topological features. This

is different from the target classification problem where we want to

find out the class membership of a node. Note that the regression

problem can be converted into a classification problem by specifying

a threshold h and assigning nodes having target function greater

than h to the target class and the rest to the non-target class.

Although we examine 16 topological features, as we shall see

later, not all features are relevant to a given signalling network. In

fact, incorporating irrelevant features may adversely impact the per-

formance of the prediction model. Hence, it is important to learn a

set of predictive topological features that best characterizes targets

(referred to as topological feature selection) for a given network.

Formally, it is defined as follows.

Definition 1: Given a signalling network G ¼ ðV;EÞ and an out-

put node x 2 V, let Tx � V and Xall denote the set of known targets

in G relevant to x, and the set of topological features of G, respect-

ively. Then, the goal of ‘topological feature selection’ is to find a set

of ‘predictive topological features’ F � Xall that maximizes the pre-

diction accuracy for f ðnðu;FÞÞ subject to the following conditions:

f ðnðu;FÞÞ ¼ 1 when u 2 Tx;

f ðnðu;FÞÞ ¼ 0 otherwise:

(
(1)

Then the topological feature-based target characterization prob-

lem is formally defined as follows.

Definition 2: Given a signalling network G ¼ ðV;EÞ, an output

node x 2 V, Tx, and Xall, let F denote the set of predictive topo-

logical features. Then, for a threshold h, the goal of the ‘topological

feature-based target characterization problem’ is to identify a set of

predictive topological features F � Xall using topological feature se-

lection and learn a ‘characterization model’ gðnðu;FÞÞ subject to the

conditions

gðnðu;FÞÞ 2 <;

gðnðu;FÞÞ�h when u 2 Tx;

gðnðu;FÞÞ < h otherwise;

8>><
>>: (2)

that maximizes the target prediction for gðnðu;FÞÞ.

Figure 1 depicts a pictorial overview of the topological feature-

based target characterization problem. For example, given the MAPK-

PI3K signalling network, its associated output node ERKPP, the set of

known targets in this network and the topological features in Table

1, the goal of this problem is to produce the followings: (i) identify

the set of predictive topological features F ¼ fd; p; hin; houtg and (ii)

learn a characterization model g(n(ERKPP,FÞÞ. Note that in

Definition 2, there is no need to explicitly specify a threshold h if we

are only interested in obtaining the relative rankings of the nodes.

The threshold is required if we want to assign class labels (e.g. target

class) to the nodes.

2.3 SVM-based target characterization
We employ support vector classification (SVC) to select predictive

topological features and support vector regression (SVR) to generate

the characterization model. The SVC and SVR are typically formulated

as constrained optimization problems and solved using the

Lagrangian multiplier method. In general, SVM models contain mul-

tiple parameters, such as the cost parameter C and parameters

related to the kernel function, that affect the learning and perform-

ance of the models (Chapelle et al., 2002). We follow the method in

Hsu et al. (2003) for training the SVM. The feature values are scaled

linearly to the range of [0, 1] for each signalling network to avoid

features with larger ranges dominating those with smaller ranges.

We use stratified (The training data were sampled from the original

data such that the ratio of the targets to non-targets is similar to that

of the original data.) cross-validation (Supplementary Material S1.

3) and grid-search (Hsu et al., 2003) on the training data to identify

the best values of the model parameters. Note that cross-validation

helps us to avoid the issue of overfitting the data whereas stratifica-

tion enables us to keep the percentage of targets in the different folds

similar to the original dataset. The best parameter is the one that

yields the best average prediction accuracy for the cross-validation

process. Wherever possible (In our study, we set a lower bound of

Table 1. Topological features

Symbol Description

hu Degree centrality of node u. The in, out and total degree

centralities are denoted as hinðuÞ; houtðuÞ and htotalðuÞ,

respectively

au Eigenvector centrality of node u

bu Closeness centrality of node u

cu Eccentricity centrality of node u

du Betweenness centrality of node u

pu Bridging coefficient of node u

fu Bridging centrality of node u

ju Clustering coefficient of node u. The undirected, in, out,

cycle and middleman clustering coefficients are denoted as

jundirðuÞ; jinðuÞ; joutðuÞ; jcycðuÞ and jmidðuÞ, respectively

lu Proximity prestige of node u

xu Target downstream effect of node u
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one target in all our test sets.), we use a 10-fold stratified cross-

validation as larger fold numbers reduce pessimistic bias and

10-folds generally give good performances (Kohavi et al., 1995).

Several non-trivial issues, namely, irrelevant or redundant fea-

tures, noisy labels and imbalanced dataset, need to be addressed in

training the SVM model for characterizing targets. In particular, we

use feature selection to select for appropriate features to be used in

the SVM model and cost-sensitive learning to handle the issue of

noisy labels and imbalanced dataset. We examine three feature se-

lection approaches, namely, backward stepwise elimination (BSE)

(Marill et al., 1963), Wilcoxon-ROC based elimination (WRE)

and WRE-BSE. BSE is classifier-aware whereas WRE is classifier-

independent. WRE-BSE which performs WRE followed by BSE is a

hybrid approach. Note that compared to classifier-independent

methods, classifier-aware methods interact with the classifiers and

such interaction can lead to better classification results (Saeys

et al., 2007). However, they are typically computationally expen-

sive and run the risk of model-overfitting. Cost sensitive learning is

an algorithmic approach that chooses an appropriate strategy spe-

cific to the classifier to overcome the bias introduced by imbal-

anced data and the noise caused by uncertainty in labelling. We

use WMC, an approach that proportionates the misclassification

cost of the training data according to class. In particular, we use a

variable Ci as the cost parameter C:

Ci ¼
Cþ if yi ¼ þ1

C� if yi ¼ �1

(
(3)

subject to the constraints Cþ þ C� ¼ 1; Cþ > 0 and C� > 0 where

yi is the class predictor and Cþ and C� denote the misclassification

cost of the target and non-target classes, respectively.

2.4 The TENET algorithm
Given a signalling network G ¼ ðV;EÞ, an output node x 2 V, a

known target set Tx � V, a set of topological features Xall and a

step-size of the misclassification cost s, TENET identifies the set of

predictive structural features and a characterization model that best

characterizes these known targets. Note that Xall and s are optional

inputs and are set to default values (Xall is set to the 16 topological

features given in Table 1 whereas s is set to 0.1.) if they are not

given. The known targets Tx can be extracted by following the cur-

ation process described in Chua et al. (2014) (Supplementary

Material S1.2). The TENET algorithm comprised three phases,

namely, the pruning phase, the feature extraction phase and the

model training phase. First, the pruning phase identifies relevant

nodes (denoted as Vcandidate) that shall be used for training the SVM.

Then, the feature extraction phase extracts all the topological

features (denoted as Xall) of each candidate node and stores them in

a jVcandidatej � jX allj matrix H. Finally, in the model training phase,

TENET learns the optimal set of predictive topological features F and

the best model parameters of the characterization model M.

We shall now describe these phases in turn. The formal algorithm is

given in Supplementary Material S1.4.

2.4.1 Phase 1: Pruning

In this phase, TENET prunes nodes that do not have paths leading to

the output node x. This phase yields a set of potential candidate

nodes Vcandidate � V and is used to reduce the subsequent computa-

tion. In the pruning process, the given network G is first prepro-

cessed into a bipartite graph and then converted into a directed

acyclic graph (DAG), a graph with consistent topological ordering, to

facilitate indexing of nodes. Note that the node indices shall be used

subsequently to perform reachability check to identify the nodes to

be pruned. We adopt the method in Engelfiet et al. (1990) for bipart-

ite graph conversion. In order to convert the bipartite graph into its

DAG representation, we adopt the approach in Tarjan et al. (1972) to

identify SCCs and replace each SCC with a representative node

(referred to as meta node). Then, we adopt the indexing approach of

Chen et al. (2005) to index the DAG. This indexing approach per-

forms depth-first traversal to assign each node v a preorder index

(when v is first visited) and a postorder index (when all descendent

nodes of v are visited). Finally, an index-based reachability algo-

rithm is used to determine whether there exists a path from each

node v to the output node x (denoted as v! x). Given a node v and

x, let w be the descendent of v that is not in the spanning tree

(referred to as non-spanning tree node) and v.preorder and v.postor-

der denote the preorder and postorder indexes of v, respectively.

A path v! x exists if any of the following conditions are satisfied

(Chen et al., 2005):

1. v:preorder�x:preorder and v:postorder�x:postorder.

2. w:preorder�x:preorder and w:postorder�x:postorder.

Note that the pruning step is beneficial in improving execution time

for larger sparsely connected networks and for output node that are

positioned further upstream. For instance, in the MAPK-PI3K network,

no nodes are pruned when we select ERKPP (downstream) as the out-

put node whereas 17 nodes (47.2%) are pruned when activated Ras

(RasGTP) (upstream) is selected.

2.4.2 Phase 2: Feature extraction

In this phase, for all nodes in Vcandidate, TENET extracts all the topo-

logical features in Table 1 for characterizing the known targets.

2.4.3 Phase 3: Model training

Given a matrix of topological feature values H, a target set Tx and a

step-size of the misclassification cost s, this phase identifies a set of

predictive topological features F and the best parameters for config-

uring the characterization modelM. First, the misclassification cost

of the target class Cþ is initialized to a default value of 0.5. Then,

feature selection is used to obtain the predictive topological feature

set F . We iterate over three different feature selection approaches

(BSE, WRE and WRE-BSE). Next, the step-size s is used to step through

the range of misclassification cost (0–1). In each iteration, the mis-

classification cost of the target class Cþ is incremented according to

the number of iterations completed, before the SVM training is per-

formed to obtain the parameter settings of the characterization

modelM with the best accuracy.

The BSE approach is a well-known greedy approach that progres-

sively removes features from the naı̈ve SVM model (built using all

topological features) and trains a new best model after each feature

removal. The elimination process stops when removal of additional

features results in a worse average accuracy of the validation set

Signaling network 
(E.g., MAPK/PI3K network)

Targets 
nodes

Characterization 
modelTENET

Target 
Characterization

E.g., Akt, Raf, MEKPP 
(in Supplementary Material 
Table 2)

Predictive feature set 
(E.g., betweenness, 
bridging centrality)

Output node 
(E.g., ERKPP)

Fig. 1. Target characterization problem
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prediction. In contrast, the WRE approach performs two statistical

tests, namely, one-tailed Wilcoxon Rank-Sum (referred to as

Wilcoxon) and receiver operating characteristics (referred to

as ROC). The results are used to eliminate features that do not dis-

criminate between targets and non-targets in a significant manner

(based on Wilcoxon) and that do not classify targets well (based on

ROC). Note that we perform two 1-tailed Wilcoxon tests and for

each test; P-values smaller than 0.05 are considered significant.

Hence, we take the difference of the P-values for both test hypothe-

ses (referred to as P-value difference) and remove features with

P-value difference less than 0.9. For the ROC analysis, features with

AUC less than 0.7 (Hosmer Jr et al., 2004) are considered poor per-

formers and are removed. The best characterization model is found

by training the SVM using the remaining features. The WRE-BSE

approach first performs WRE followed by BSE.

The worst-case time complexity of TENET is OððjVj þ jEjÞ2 þO

ðGðXallÞÞ þOðT ð�ÞÞÞ where GðXallÞ is the worst-case time complex-

ity for extracting the features and OðT ð�ÞÞ is the worst-case time

complexity of the feature selection method used. Note that in this

article, GðXallÞ ¼ OðjVj3Þ whereas OðT ð�ÞÞ ¼ OðjXallj2 � k� jVj3Þ
(for BSE) where k is the number of iterations required for the grid-

search. Proofs are given in Supplementary Material S1.5.

3 Results and discussion

TENET is implemented using Java. We shall now present the experi-

ments conducted to study the performance of TENET and report

some of the results here (additional results are given in

Supplementary Material). The experiments are performed on a com-

puter system using a 64-bit operating system with 8 GB RAM and a

dual core processor running at 3.60 GHz. We characterize four sig-

nalling networks (referred to as individual networks) in BioModels

(I1–I4 in Table 2) and a combined network that is generated by

iteratively performing a union of the nodes and edges in individual

networks. The resulting combined network is a graph consisting of

four disconnected (The node and edge sets of the individual

networks are disjoint.) subgraphs, each representing one individual

network. For the combined network, we use each of the signalling

network as the test set in turn (C1–C4 in Table 2) and examine the

effects of generating characterization models from individual

networks and from the combined network. Pruning in TENET is

performed on each individual network within the combined net-

work. Supplementary Material S1.3 describes the generation of the

training and test data. Note that in all our experiments, we use

the linear kernel as it yielded the same accuracy as other kernels but

is faster to train (Supplementary Material S1.7.1). We study

different variants of TENET (Table 3) by varying the SVM training

approach.

3.1 Performance metrics
We evaluate the performance of TENET based on prediction accuracy

[The accuracy for the validation and test sets are denoted as /XðvalÞ
and /XðtestÞ, respectively, where X indicates the method used for

training the SVM model. Average prediction accuracy is denoted as /]

(/), sensitivity (TPR), specificity (TNR) and precision (PPV) of the gener-

ated characterization models using the same training and test set. The

definitions are as follows: /¼ tpþtn
tpþtnþfpþfn, TPR¼ tp

tpþfn, TNR¼ tn
fpþtn and

PPV¼ tp
tpþfp where tp; tn; fp and fn denote true positive, true negative,

false positive and false negative prediction, respectively. Note that PPV

is set to 0 when the classifier did not make any positive prediction.

We include an additional metric feature reduction factor (FRF) to

compare the performance of the feature selection methods. Formally,

FRF ¼ 1�jFjXall
where Xall is the entire set of features considered in the

study. The performance of different characterization models is com-

pared using an integrated performance score (This score can be modi-

fied according to the needs of the application.) P ¼
X

m2M
valm

where M ¼ f/ðvalÞ;/ðtestÞ; TPR, TNR, PPV} and valm is the value of

metric m. Note that a larger score indicates better performance.

3.2 Feature selection
First, we examine the performance of different feature selection

approaches (TENET-B, TENET-R and TENET-H) and compare it with

TENET-naı̈ve for different signalling networks. Note that in this set

of experiments, we study the effect of the feature selection

approaches in isolation. The effect of incorporating WMC into the

SVM shall be investigated later. Table 4 reports the predictive feature

sets for each network using different approaches. In total, 24 experi-

ments were conducted as there are three feature selection methods

and eight networks (I1–I4 and C1–C4). Amongst these 24 experi-

ments, 25% of the predictive feature sets consist of only one feature

whereas the remaining had multiple features (ranging from 4 to 15

features). This supports our previous observation (Chua et al.,

2014) that multiple features result in better prediction of known tar-

gets. Observe that in Table 4, bridging centrality is not always in the

predictive feature set (e.g. I2). Figure 2 plots the performances of dif-

ferent feature selection approaches. We can make several observa-

tions. First, no single approach performs consistently well on all

performance metrics. In fact, network topology plays an important

role in feature selection. For instance, I4 has extremely high density

of edges (ratio of edges to nodes) compared to other networks. The

connectivity features of such networks become less informative and

other features such as target downstream effect become more

important. Hence, the most appropriate feature selection approach

is dependent on the signalling network. However, we note that for

larger sized networks, a larger number of features are informative

(regardless of feature selection approach). This is perhaps because

larger networks provide greater richness of context and diversity of

structure in the sub-networks. As network sizes are growing and net-

work analysis demands applicability to larger networks, future

methods might benefit particularly from the use of multiple features.

Second, feature selection generally led to an improvement in predic-

tion accuracy (87.5% for validation dataset and 50% in test dataset)

over the naı̈ve approach. An exception is C4 in which feature selec-

tion resulted in poorer performance. In C4, the characterization

model is generated using I1, I2 and I3 as training data whereas I4 is

used as the test data. The characteristics of the known targets in the

training data may be quite different from that of the test data.

Indeed, from Table 4, we observe that bridging coefficient p is

included in the predictive topological feature set of C4, but not in I4.

Including redundant features may lead to poorer performance.

Third, the models generally have high specificity due to imbalanced

dataset. Fourth, TENET-R has the best runtime performance, followed

by TENET-H and TENET-B. The poorer performance of TENET-B is due

to the interaction of the feature selection approach with the classifier

(classifier-aware approach) which is different from TENET-R where

the feature selection approach is a wrapper layer that sits on top of

the classifier. Finally, the size of the networks used for training af-

fects the runtime performance. In general, larger size networks

require longer runtime. In the Supplementary Material S1.7.6, we

report TENET’s performance on the human cancer signalling network

containing more than 2500 nodes.

3310 H.E.Chua et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/20/3306/195701 by guest on 14 N
ovem

ber 2021

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv360/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv360/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv360/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv360/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv360/-/DC1


T
a
b

le
2
.
D

a
ta

se
t

N
et

w
o
rk

n
o
ta

ti
o
n

I 1
I 2

I 3
I 4

C
1

C
2

C
3

C
4

D
a
ta

se
t

(B
io

M
o
d
el

ID
)

M
A
P
K
-
P
I
3
K

(0
0
0
0
0
0
0
1
4
6
)

g
l
u
c
o
s
e

-s
ti

m
u
la

te
d

i
n
s
u
l
i
n

se
cr

et
io

n

(0
0
0
0
0
0
0
2
3
9
)

e
n
d
o
m
e
s
o
d
e
r
m

g
en

e

re
g
u
la

to
ry

(0
0
0
0
0
0
0
2
3
5
)

g
l
u
c
o
s
e

m
et

a
b
o
li
sm

(0
0
0
0
0
0
0
2
4
4
)

A
ll

n
et

w
o
rk

s

O
u
tp

u
t

n
o
d
e(

s)
E
R
K
P
P

A
T
P
m
i
t
o
c
h
o
n
d
r
i
a
l

P
r
o
t
e
i
n
_
E
_

E
n
d
o
1
6

a
c
e
t
a
t
e

{E
R
K
P
P
,
A
T
P
m
i
t
o
c
h
o
n
d
r
i
a
l
,
P
r
o
t
e
i
n
_
E
_
E
n
d
o
1
6

,
a
c
e
t
a
t
e

}

N
o
.
o
f

n
o
d
es

in
d
a
ta

se
t

3
6

5
9

6
2
2

4
7

7
6
4

7
6
4

7
6
4

7
6
4

N
o
.
o
f

h
y
p
er

ed
g
es

in

d
a
ta

se
t

3
4

4
5

7
7
8

1
0
9

9
6
6

9
6
6

9
6
6

9
6
6

N
o
.
(%

)
o
f

ta
rg

et
s

in

d
a
ta

se
t

9
(2

5
%

)
6

(1
0
.2

%
)

2
0
6

(3
3
.1

%
)

1
6

(3
4
%

)
2
3
7

(3
1
%

)
2
3
7

(3
1
%

)
2
3
7

(3
1
%

)
2
3
7

(3
1
%

)

C
ro

ss
v
a
li
d
a
ti

o
n

8
-f

o
ld

5
-f

o
ld

1
0
-f

o
ld

1
0
-f

o
ld

1
0
-f

o
ld

1
0
-f

o
ld

1
0
-f

o
ld

1
0
-f

o
ld

T
es

t
se

t
S
u
p
p
le

m
en

ta
ry

M
a
te

ri
a
l
a
n
d

T
a
b
le

5
M
A
P
K
-
P
I
3
K

g
l
u
c
o
s
e

-s
ti

m
u
la

te
d

i
n
s
u
l
i
n

se
cr

et
io

n

e
n
d
o
m
e
s
o
d
e
r
m

g
en

e

re
g
u
la

to
ry

g
l
u
c
o
s
e

m
et

a
b
o
li
sm

N
o
.
(%

)
o
f

ta
rg

et
s

in

te
st

se
t

1
(2

5
%

)
1

(1
0
%

)
2
1

(3
4
.4

%
)

2
(4

0
%

)
9

(2
5
%

)
6

(1
0
.2

%
)

2
0
6

(3
3
.1

%
)

1
6

(3
4
%

)

Table 4. Features selected by various feature selection approaches

DataTENET-B TENET-R TENET-H

I1 d, p, hin, hout d, f, b, #, hout, l,

jundir

d, f, b, #

I2 hin d, p, b, jundir, jcyc, a,

hin, jin, l, jmid, hout,

htotal

p, b, jcyc, jundir

I3 d, f, p, b, jcyc, #, a,

jin, jmid, l, jout,

hout, x, htotal, jundir

d, f, #, a, jmid, hout,

htotal, x, jundir

d, f, #, a, hout, htotal,

jundir

I4 f, b, jcyc, #, a, jin,

jmid, l, x, jout,

hout, htotal, jundir

x x

C1 d, f, p, b, jcyc, #, a,

hin, jmid, hout, l, x,

jundir

d, f, p, b, #, a, jmid,

jundir, hout

f, p, #, a, hout, jundir

C2 d, f, p, b, jcyc, #, a,
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d, f, a, jmid, hout, x,
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d, f, a, jmid, x, jundir

C3 hin f f
C4 f, p, b, jcyc, #, a, jin,

hin, x, jout, hout,

htotal, jundir

d, f, p, #, a, jmid,

hout, x, htotal, jundir

f, p, #, a, jundir, x,

hout, htotal, jmid

 0
 0.2
 0.4
 0.6
 0.8

 1

I0 I1 I2 I3 C0 C1 C2 C3

FR
F

 0
 0.2
 0.4
 0.6
 0.8

 1

I1 I2 I3 I4 C1 C2 C3 C4

– φ(v
al)

 0
 0.2
 0.4
 0.6
 0.8

 1

I1 I2 I3 I4 C1 C2 C3 C4

φ(t
es

t)

 0
 0.2
 0.4
 0.6
 0.8

 1

I1 I2 I3 I4 C1 C2 C3 C4

TP
R

 0
 0.2
 0.4
 0.6
 0.8

 1

I1 I2 I3 I4 C1 C2 C3 C4

TN
R

 0
 0.2
 0.4
 0.6
 0.8

 1

I1 I2 I3 I4 C1 C2 C3 C4

PP
V

 0.01
 0.1

 1
 10

 100
 1000

 10000

I1 I2 I3 I4 C1 C2 C3 C4Ex
ec

uti
on

 tim
e (

mi
n)

Feature Selection Approach
TENET-naive TENET-B TENET-R TENET-H

Fig. 2. Performance of different feature selection approaches

Table 3. TENET variant and WMC weight ratios used in experiment

p
indicates the approach(es) used in the variant.
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3.3 Effect of varying WMC

Intuitively, when we vary the WMC, we expect that as the target mis-

classification cost Cþ increases, the prediction accuracy, sensitivity,

specificity and precision would display a negative skewed, increas-

ing, decreasing and positive skewed distribution, respectively. This

is because a large Cþ eventually results in a model that is likely

biased towards classifying data as targets. We noted the following

when the WMC was varied. First, amongst the individual networks,

only I3 (Fig. 3) displays the expected trends. This could be due to the

extreme small target size (1 or 2) in the test set that resulted in

extreme fluctuations in the performance metrics and deviation from

the expected trends. Hence, the target size of the test set can have

significant impact on the observed results. Second, the performance

of the combined networks C1, C2 and C4 (Supplementary Material

S1.7.2) resembles that of I3, possibly due to the large size of I3 domi-

nating over other networks used for training. This implies large

training networks can have undue influence on the characterization

model. Third, sensitivity generally improves whereas specificity gen-

erally deteriorates when the target misclassification cost is set higher

than the non-target misclassification cost (Cþ > C�). The choice of

an appropriate model depends on the application. Fourth, the pre-

diction accuracy tends to display a skewed distribution where accur-

acy initially increases (or remains constant) with increasing Cþ, and

then decreases with increasing Cþ. Fifth, individual networks and

combined networks behave differently. In individual networks, pre-

diction accuracy, sensitivity and precision generally improve when

Cþ is set larger than C�. However, in combined networks, sensitiv-

ity improves whereas other performance criteria deteriorate when

Cþ is set larger than C�. Hence, there is no single universal best

value of Cþ and the choice of Cþ depends on the network.

3.4 Best TENET variant
We identify the best TENET variant (Table 5) using the integrated

performance score P. We note the following. First, the best TENET

variant is network dependent. Second, variants incorporating both

WMC and feature selection generally perform well. Specifically, set-

ting Cþ greater than C� led to better results. Third, TENET variants

based on individual networks (I1 to I4) outperform that based on

combined networks (C1–C4). The poorer performance of the com-

bined networks may be due to insufficient number of training net-

works, inappropriate or insufficient features used for training or

that signalling networks by nature have distinct characteristics and

it is just not possible to have a generalized model. Finally, the pre-

dictive topological features differ across networks (Tables 4 and 5).

Hence, as we mentioned in Section 1, a single set of predictive topo-

logical features may not effectively characterize known targets in all

signalling networks. When we compare the results with that in our

previous work, we note that the set of predictive topological features

is different from the discriminative topological features (DTF) identi-

fied in Chua et al. (2014) although there was an overlap of at least

50% of the features (We consider only I1 to I3 and exclude I4 from

this comparison as no DTF was found at P-value less than 0.05). The

difference is due to the different approach used to identify the fea-

tures. The characterization models (We use SVM with WMC and WRE

to generate the characterization models.) generated by these DTFs

also yielded poorer average ROC (0.873) than that generated using

TENET (0.913) (Approach DIFFER in Fig. 4).
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Fig. 3. Performance of TENET variants incorporating feature selection approach

and WMC for the endomesoderm gene regulatory network

Table 5. Summary of best TENET variant for different networks

I1 I2 I3 I4 C1 C2 C3 C4

Best approaches TENET-B
a,

TENET-WB

(Cþ ¼ 0.1,

0.2, 0.3, 0.4)

TENET-WH

(Cþ ¼ 0.9a)

TENET-WB

(Cþ ¼ 0.7a)

TENET-WB

(Cþ ¼ 0.2, 0.3,

0.4, 0.6, 0.8a)

TENET-WH

(Cþ ¼ 0.6a)

TENET-R
a TENET-WR

(Cþ ¼ 0.8a),

TENET-WH

(Cþ ¼ 0.8)

TENET-naı̈vea

P 4.935 4.109 3.86 4.9 3.08 3.022 3.268 2.917

/ðvalÞ [D/ðvalÞ] 0.935

[0.16]

0.82

[�0.087]

0.747

[�0.02]

0.9

[0.268]

0.734

[�0.013]

0.711

[�0.052]

0.561

[�0.274]

0.757 [0]

/ðtestÞ [D/ðtestÞ] 1 [0] 0.9 [0] 0.803

[0.088]

1 [0.667] 0.694

[0.136]

0.78

[0.070]

0.724

[0.097]

0.609 [0]

TPR [DTPR] 1 [0] 1 [1b] 0.905 [0.462] 1 [1] 0.4 [0.333] 0.5 [0.502] 0.602 [1b] 0.313 [0]

TNR [DTNR] 1 [0] 0.889

[�0.111]

0.75

[�0.063]

1

[0.499]

0.808

[0.105]

0.811

[0.048]

0.788

[�0.212]

0.767 [0]

PPV [DPPV] 1 [0] 0.5 [1b] 0.655

[0.058]

1 [1] 0.444

[0.48]

0.231

[0.615]

0.593

[1b]

0.471 [0]

Note: Cþ values are provided in bracket besides approaches using WMC. Dx ¼ xbest�xnaı̈ve

xnaı̈ve
where xbest and xnaı̈ve are the values of performance metric x of the best

TENET variant and TENET-naı̈ve, respectively.
aBest models selected for generating the characterization model.
bInstances where xnaı̈ve ¼ 0.
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3.5 Comparison with state-of-the-art approaches
Recall that state-of-the-art techniques such as McDermott et al.

(2012), Zhang et al. (2010) and Hwang et al. (2008) focus on PPI

networks instead of signalling networks. To the best of our know-

ledge, there does not exist any target characterization technique for

signalling networks. However, one way to investigate the perform-

ance of TENET is to examine how well the characterization model

generated by it prioritizes known targets. Intuitively, target priori-

tization aims to rank the nodes according to their potential of being

a target based on some importance measures (e.g. gene expression

level; Chen et al., 2011). A more detailed exposure to the target pri-

oritization problem as well as how TENET is used to prioritize known

targets is given in Supplementary Material S1.6.

For our study, we compare TENET with several network-aware

target prioritization approaches, namely, random prioritization, LSA

(Gustafson et al., 1996) and NetworkPrioritizer (Kacprowski et al.,

2013). Comparison with network-unaware techniques as well as PPI

network-based techniques is reported in the Supplementary Material

S1.7.3 and S1.7.4, respectively.

In random prioritization, the nodes were randomly assigned a

rank in the range [1–jVj] where jVj is the number of nodes in the

network and we assume that no ranking ties are present. LSA was

performed using Copasi (Sahle et al., 2006) with the following con-

figuration: {task¼sensitivities; subtask¼time series; function¼all

variables of the model; and variable¼all parameter values}. We con-

sider both Weighted Borda Fuse (WBF) and Weighted AddScore Fuse

(WASF) in NetworkPrioritizer and consider all features provided.

Note that uniform weights were used for rank aggregation as we do

not have prior knowledge of the best weights or features to consider.

For TENET, we use the characterization model to generate prioritiza-

tion ranks of known targets. Specifically, we apply the SVM models

to obtain these ranks. The SVM type is set to �-SVR [In �-SVR, the error

function is an �-insensitive loss function and error smaller than � is

ignored (Chang et al., 2011).] with default � value (1 � 10�3) and

the SVM parameters are set according to the best models for each net-

work (Table 5 and Supplementary Material S1.7). Note that the

nodes are ranked in decreasing order of the regression score and

higher ranked nodes are more likely to be targets.

The experimental results reveal that the normalized ranks

(The normalized rank of a node u for a particular approach x is

defined as WnormðxÞ:u ¼ Wx:u

maxi2VðWx :iÞ.) of a given node vary widely using

different approaches (Supplementary Material S1.7.5). Hence, an

approach that performs better for one particular network can perform

poorly in another. We further perform ROC analysis based on the

rankings of the nodes in the test set for each network. From Figure 4,

we observe that TENET outperforms other approaches in terms of the

quality of the prioritization results, particularly for individual net-

works, and is comparable in terms of runtime performance when SVM

training is performed offline [TENET (Regression only)].

4 Conclusions

We propose TENET, an SVM-based approach that characterizes

known targets in signalling networks using topological features by

identifying a set of predictive topological features and using them to

generate a characterization model. TENET uses feature selection to

remove redundant features, thereby improving prediction accuracy

of the characterization models and WMC to improve other perform-

ance criteria (e.g. sensitivity). Our empirical study reveals that the

characterization models generated by TENET outperform state-of-

the-art approaches in prioritizing signalling and PPI networks. In

summary, the contribution of this work is a machine learning-based

framework that affords flexibility in characterizing signalling net-

works of different sizes and with different number of known targets.

Although TENET is evaluated on a small (Manual target curation, a

time-intensive process, is needed to identify known targets of signal-

ling networks for validating our experimental results.) number of

signalling networks, it can easily incorporate additional signalling

networks without any modification to the framework. As part of

future work, we intend to explore how the characterization models

learnt by TENET can be leveraged for target prioritization of sig-

nalling networks with unknown targets.
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