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ABSTRACT

A key challenge facing drug discovery is the identification of
target(s) in a signaling network whose perturbation results
in a desired therapeutic outcome. Recent studies have shown
that analysis of biological networks based on topology can
facilitate target identification by providing valuable informa-
tion on characteristics of targets. In this paper, we present
an algorithm called DIFFER that discovers the discrimina-
tive topological features (DTF) from a signaling network to
distinguish the targets from the non-targets. Our empirical
study on five signaling networks reveals that the majority of
DTFs are able to identify most of the known targets in these
networks. Furthermore, they are distinct for different net-
works. That is, no single topological feature can characterise
targets in all signaling networks. This is in contrast to the
findings in [28] where bridging nodes are considered to be
good targets with low lethality across several PPI networks.
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1. INTRODUCTION

Cells use sophisticated communication between proteins
in order to perform a variety of cellular functions such as
growth, survival, proliferation and development. As sig-
naling proteins rarely operate in isolation through linear
pathways, cell signaling can be viewed as a large and com-
plex network. Specifically, the network view emerges due
to ‘cross-talks’ between signaling pathways. Such network
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contains numerous features such as feedback and feedfor-
ward loops, which render it virtually impossible to manually
comprehend how signals are integrated in these pathways.
Understanding signal flow in the network is paramount as
alterations of cellular signaling events, such as those that
arise by gene mutations or epigenetic changes, can result in
various diseases. For example, alterations to the genes that
encode key signaling proteins, such as ras and P13k, are
commonly observed in many types of cancers.

A key challenge towards drug discovery for various com-
plex diseases is the identification of target(s) in a signaling
network whose perturbation results in a desired therapeutic
outcome [26]. Informally, a target in the signaling network
is a node that, when perturbed, modulates the activity of
a specific node, referred to as output node. An output node
is a protein that is either involved in some biological pro-
cesses which may be deregulated, resulting in manifestation
of a disease, or be of interest due to its potential role in
the disease (e.g., phosphorylated ERK in the MAPK-PI3K net-
work [25]).

An intriguing possibility is to explore whether analysis of
topology of the signaling network themselves may provide
valuable information on characteristics of targets to facili-
tate their identification. This is more so as recent studies
have strengthen the hypothesis that network topology is an
essential feature in the emergent system function of the pro-
tein when it is perturbed [28]. For instance, Hwang et al. [28]
have suggested bridging nodes (nodes with high bridging cen-
trality) in a protein-protein interaction (PPI) network as po-
tential drug targets, although modulation of the bridging
targets themselves may still be indirect. An initial network
analysis of the current drug targets of approved drugs indi-
cated that drug targets are commonly highly connected but
not essential nodes [52,92].

Unfortunately, the aforementioned techniques for target
characterisation have primarily focused on analyzing topol-
ogy of PPI networks. For instance, Hwang et al. [28] analyzed
the topology of the yeast PPI network, C21-steroid hor-
mone metabolism network, steroid biosynthesis network
and a protein-interaction network of candidate sudden car-
diac death susceptibility genes. Unfortunately, edges in PPI
networks are undirected; there is neither flow of information
nor mass between nodes - an edge simply indicates that two
proteins bind [64]. Hence, they may not effectively provide
insights into the dynamics of the interacting molecular play-



Symbol | Description

[ Degree of node u. The in, out and total degrees
are denoted as 0, (u), Oout(u) a0d Ototai(w), respec-
tively.

Qu, Eigenvector centrality of node w.

Bu Closeness centrality of node u.

Yu Eccentricity centrality of node w.

O Betweenness centrality of node wu.

Ty, Bridging coefficient of node w.

Cu Bridging centrality of node w.

Ku Clustering coefficient of node u. The undirected,
in, out, cycle and middleman clustering coefficients
are denoted as Rundir(u)) Fin(u)s Fout(u)s Keye(u)
and Kyid(u), respectively.

L Proximity prestige of node w.

Wy Target downstream effect of node .

Table 1: Topological features.

ers as well as models of signal transduction, key prerequisites
for inferring potential drug targets. Second, PPIs have high
false-positive rate, in the sense that although these proteins
can truly physically bind they may never do so inside cells,
because of different localization, or because they are never
simultaneously expressed. Hence, we advocate that it is im-
portant to analyze the topology of signaling networks to have
a better understanding of the characteristics of targets.

Given a signaling network and a set of curated targets,
in this paper we propose an algorithm called DIFFER that
discovers the discriminative topological features (DTF) that
characterise these targets. Specifically, we explore 16 graph
theoretic-based topological features of the nodes in a signal-
ing network to determine features that distinguish targets
from non-targets. Our investigation of the proposed algo-
rithm on five signaling networks reveals that, interestingly,
the set of DTFs are distinct for different networks. That
is, not all targets in these networks have high bridging cen-
trality. For instance, the targets in MAPk-P13k [25] have
high degree centrality and high bridging centrality. How-
ever, targets in the glucose-stimulated insulin secretion net-
work [32] have high degree centrality and high eigenvector
centrality. Observe that this is in contrast to the findings
in [28] where bridging nodes are considered to be good tar-
gets with low lethality. This is also in contrast to the recent
study by Sharma et al. [71], which advocates that disease-
related genes have low clustering coefficient as a discrimina-
tive feature in gene-gene interaction networks.

The rest of the paper is organized as follows. In Section 2,
we introduce the set of topological features that we consider
for our study. In Section 3, we introduce the five signaling
networks we investigate and describe our curation process
to identify the targets in these networks. We describe the
DIFFER algorithm in Section 4. Empirical analysis of our
algorithm and results are discussed in Section 5.

2. NETWORK TOPOLOGICAL FEATURES

Signaling networks model biological systems as directed

hypergraphs (G = V, E') where the nodes V represent molecules

(e.g., proteins) and the edges E represent interactions [35,
38,67]. In this section, we briefly describe the network topo-
logical features we consider for characterizing targets in sig-
naling networks. These features are selected based on their
role in measuring relative importance of a node in a signaling
network. A summary of these features is given in Table 1.
We use the MAPK-PI3K signaling network [25] as a running
example (Figure 1) to illustrate these features.

RHRG : :HRG
RHRGZ RHRG R

She 4——: PI3K
RShc RP RP\SK
RShP RPISK
internalization Akt
RShGS
PI < PIP3 AktP\P(i
ShP PP2A
Raf MEKP MEKP
MEKPP MEKPP
_PPA AKtPIPP

—> AKPIPP q— " AkPIP
-
RasGDP RasGTP s

c S

Raf*
» MEKPP ERKP

Ml | AP MKPS
AKtPIPP

MEKP AktPIPP
Figure 1: The MAPK-PI3K network adapted from [25].

Degree Centrality. It is a local centrality measure based
on the number of edges a node has [24]. For directed net-
works such as the signaling network, there are three variants
of degree centrality, namely, in degree, out degree and total
degree centrality which consider only in-going edges, only
out-going edges, and all edges of a node, respectively.

DEFINITION 1. Given a signaling network G = (V, E), in
degree of a node u € V is defined as Oinuy = Y,y |€vul
where ey, € E is the edge connecting node v € V' to u. Out
degree and total degree are denoted as Ooui(u) = Dy |Cun]
and Ootai(u) = Gin(u) + Oout(u), respectively.

Generally, a node with high degree centrality (hub) is con-
sidered an important node. In particular, studies have found
that biological networks resemble scale-free networks [58] in
that they are robust against random perturbation of non-
hub nodes [1]. Specifically, a high in degree node acts as a
signal integrator by integrating multiple signals while a high
out degree node acts as a signal differentiator. For instance,
double phosphorylated MEK (MEKPP) is an out degree hub and
functions as a signal differentiator.

Eigenvector Centrality. Nodes with high eigenvector
centrality are well-connected to other central nodes [8]. In
a signaling network, these nodes tend to be located in the
network where signals either converge or diverge depending
on whether these central nodes have high in-degree or out-
degree. For instance, activated ErbB4 receptor (rP) which
has high eigenvector centrality is connected to many other
central nodes such as p13k*, and provides a means for con-
verging and diverging the various signals passing through
the network.

DEFINITION 2. Given a signaling network G = (V, E),
let N, be the set of neighbors of node w € V. Then, the
eigenvector centrality of u is defined as o, = % >
where A is a constant.

VE Ny Qv

According to the Perron—Frobenius theorem, in the above
definition A has to be the largest eigenvalue of the adjacency
matrix! A if the centralities are to be non-negative [55).

Closeness Centrality, Eccentricity Centrality and
Proximity Prestige. These features are based on the prox-
imity of a node to other nodes in the network. Closeness
centrality assigns node centrality value using the sum of the
shortest path distance [24] while eccentricity centrality uses

' The adjacency matrix A = {a;;} specifies the connectivity of the
network such that a;; = 1 implies an edge connecting node i to j.



the largest shortest path distance [88]. In contrast to close-
ness centrality which uses the set of nodes that a node u can
reach (influence range), prozimity prestige assesses impor-
tance based on the set of nodes that can reach u (influence
domain).

DEFINITION 3. Given a signaling network G = (V, E), let
I, CV be the set of nodes having at least one path leading
to node u and ly., be the shortest path length between nodes
u and v, where u,v € V. Then, the closeness centrality

Bu, eccentricity centrality v, and proximity prestige L.,
V]

_ _ 1
of node u are defined as B, = Socv oo Ve = manoy and
: \I‘u\
_ V-1 :
Pu = oo Tow s respectively.
[T ]

In a signaling network, the above measures of a node can
be used to determine how central it is to the regulation of
other nodes in the network [70]. For instance, Shes which
lies near the center of the network is well connected to many
other nodes in the network. Hence, it has higher closeness
centrality compared to other nodes (e.g., Mkp3) that lie near
the boundary of the network. Also, nodes with high eccen-
tricity centrality are likely to be influential signal transmit-
ters, regulating many other nodes [70]. For instance, p13x*
which lies near the center of the network has higher eccen-
tricity centrality compared to other fringe nodes such as ERk
since the fringe nodes tend to be further away from other
nodes in the network. Note that although prorimity pres-
tige has rarely been considered in the past for biological net-
works, this does not preclude its importance in this domain.
Indeed, as we shall see later in Section 5.1, prozimity prestige
is able to distinguish known targets from non-targets better
than commonly-used features such as clustering coefficient.

Betweenness Centrality. This feature assigns node cen-
trality value based on the ease in which a node can reach
other nodes in the network [9].

DEFINITION 4. Given a signaling network G = (V,E),
let dst(v) be the number of shortest paths from nodes s to t
passing through v where s,t,v € V. Then, the betweenness

centrality of v is defined as 6, = ZS#U#teV df;\(t”).

In a signaling network, these nodes can be considered ef-
ficient and crucial signal transmitters as they tend to lie on
a majority of the shortest paths between node pairs in the
network. For instance, Aktp1pP3, a hub node, has high be-
tweenness centrality in the network as it is well connected
to many other central nodes, hence providing fast access
to other nodes in the network. Comparatively, nodes (e.g.,
MKP3) that lie on the fringe of the network has low between-
ness centrality.

Bridging Centrality and Bridging Coefficient. The
bridging centrality identifies bridging nodes (nodes with high
bridging centrality value) which are located between func-
tional modules in the signaling network and mediate signal
flow between the modules [28]. The bridging coefficient mea-
sures the average probability of a node transmitting signals
to its direct neighbourhood.

DEFINITION 5. Given a signaling network G = (V, E), let
Ototai(v) be the total degree of node v € V, N, be the set of
neighbors of v, and m; be the number of outgoing edges of
node i, where i € N,. Then, the bridging coefficient of a

; _ 1 i
node v is defined as m, = Ototal(v) ZieNﬂvetotul(i)>1 Ototar(i)—1"
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Figure 2: Directed triangle graph [21].

DEFINITION 6. Given the inverses of betweenness central-
ity rank and bridging coefficient rank of node v denoted as
P s and ¢ 1, respectively, the bridging centrality is de-

ﬁﬁawgv:w%,x¢4,

As remarked in Section 1, Hwang et al. [28] reported that
compared to hub nodes (nodes with high degree), bridging
nodes are more effective drug targets with fewer off-target
effects in several PPI networks. For instance, P1P3 has high
bridging coefficient and bridging centrality since it is posi-
tioned at the boundary of a strongly connected component
(scc) within the network and helps to transmits signal be-
tween nodes outside the sScC and those within it.

Clustering Coefficient. This feature determines how
well the neighbourhood of a node is connected [84] by con-
sidering how close the neighbourhood is to being a clique
where every node within the clique is connected to every
other node in it [1]. The original definition was designed for
undirected graph. A variety of definition exists [21] when
edge directions are considered (Figure 2).

DEFINITION 7. Given a signaling network G = (V, E), let
eij € E denote an edge connecting nodes i to j wherei,j € V
and A = {ai;} be the adjacency matriz where a;; = 1 if and
only if Je € {eij,eji} C E and zero otherwise. Then, the
undirected-, in-, out-, cycle- and middleman-clustering
coefficient of a node u € V denoted as Kundir(u), Kin(u)s
Kout(u), Keye(u) 0N Kmid(u), Tespectively, are defined as

(A%)ii (AT A%
Rundir(u) = sRin(u) = 27 75 1\
0total(u) (gtotal(u) - 1) gzn(u) (gzn(u) - 1)
(A2AT) i (A%)is

Rout(u) = 0 y Reye(u) = 0 )

out(u) (aout(u) - 1) in(u)aout(u) - Afz
(AAT A);

in(u) aout(u) - AZZZ

KEmid(u) = 0 )
where Oinw), Ooutu) and Oiorai(w) are the in, out and total
degree of u, respectively; AT is the transpose of A; A™ is
the matriz product of n copies of A; and Ay denotes the i*"
element of the main diagonal of A.

Note that in the above definition, the neighbourhood size
must be greater than one. For smaller neighbourhood sizes
(Ny =0 and N, = 1), the coefficients are set to zero.

Target Downstream Effect (TDE). TDE assesses the
potential impact on the network when a node is perturbed
based on the probability of perturbing a downstream node?
w and the likelihood of w causing off-target effect [13].

DEFINITION 8. Given a signaling network G = (V, E),
let W be the set of downstream nodes of v € V\ W. Let
puv,w be the probability of perturbing w € W when target
node v is perturbed and Oio1qi(w) be the total degree of w.
The target downstream effect of v is defined as w, =

ZweW(Pv,w X Ototal(w))-

2Nodo w is downstream of v if there exists a path from v to w.



3. REPRESENTATIVE SIGNALING
NETWORKSAND TARGETS

We examine the targets of five signaling networks in this
paper, namely, Ras activation [20], MAPK-P13K [25], glucose-
stimulated insulin secretion [32], endomesoderm gene reg-
ulatory [43] and glucose metabolism [42] networks. A ref-
erence standard for judging which are the “true” biological
targets of these networks must be assembled. To this end,
manual curation of literature generates substantially lower
error rates than text mining-based approaches [75]. How-
ever, manual curation is tedious and time-intensive. Hence,
we restrict the number of networks studied in this paper
to five. In particular, we selected these networks because
they have been well-studied with sufficient literature to fa-
cilitate the curation effort. We shall now briefly introduce
these networks and describe the curation process. The net-
works are obtained from the BioModels. Net repository [45]
and are summarized in Table 2. Note that details of the
curation results are reported in [12].

Human Disease-Related Networks. Amongst the five
networks we study, three are associated with human dis-
eases (MAPK-PI3K [25], Ras activation [20], and the glucose-
stimulated insulin secretion networks [32]). The curation
process for these networks is as follows:

1. Obtain a list of unique drugs and compounds relevant
to the human disease from clinical trial database [56].

2. Obtain the targets of these drugs and compounds via
drug related databases [87] and literature survey.

3. Identify the targets that are in the scope of the signal-
ing network.

The Ras activation network describes the phospholipase
C(pLc)-e-driven compartment switching of Ras activation
at the plasma membrane and the Golgi. Ras-activation mu-
tation is found to be present in various cancers, including
ovarian cancer [68]. The MaPK-PI3K network, on the other
hand, describes the heregulin (HrRG)-induced ErbB receptor
signaling network in Chinese hamster ovary (CHO) cells. In
particular, it consists of two interacting pathways, the mapx
and p13k-Akt signaling cascades. Similar to the Ras activa-
tion network, the MAPK-P13K network is involved in human
cancers due to its roles in cell survival signaling [48]. Specif-
ically, in this paper, we associate both the Ras activation
network and the MAPK-P13K network with ovarian cancer.

Hence, we use the keywords “ovarian cancer drug” to search
the clinical trial repository [56] which yielded 2054 stud-
ies. However, only 989 studies involve drugs specific for
the purpose of ovarian cancer study while the rest involve
questionnaires, radiation treatment, or general terms such
as chemotherapy. The same drug can be used in multiple
studies. Hence, duplicated drugs are removed from the 989
studies, resulting in a total of 458 unique drugs. Amongst
these 458 drugs, some of the drugs target other networks.
The targets of the 458 drugs were identified using literature
survey. Amongst these, only those that are relevant to these
two networks are considered as reference drug targets and
are reported in Table 3 (denoted by Ip and I1).

The glucose-stimulated insulin secretion network de-
scribes glucose-stimulated insulin secretion in pancreatic
B cells which consists of five subsystems, namely, glycolysis,
the tricarboxylic acid cycle (Tca), the respiratory chain,
nicotin-amide adenine dinucleotide (NADH) shuttles and
the pyruvate cycle. In particular, this network is associated

with T2pM. Hence, we use the keywords “type 2 diabetes mel-
litus drug” to search the clinical trial repository [56] which
yielded 5858 studies. However, only 3880 studies involve the
study of effects of drugs or food constituents on type 2 dia-
betes and these studies implicated a total of 617 unique com-
pounds. Amongst these compounds, some may target other
networks. The targets of the drugs and food constituents
were identified using literature survey. Amongst these, only
those that are relevant to the network are considered as ref-
erence drug targets as reported in Table 3 (denoted by I2).

Biological Process-Related Networks. The remain-
ing networks we studied describe specific biological processes
of particular organisms. The curation process for these net-
works is as follows:

1. Obtain a list of unique molecules (genes or proteins)
relevant to the biological process of the specific organ-
ism from PubMed using specific keywords.

2. Identify the molecules that are in the scope of the sig-
naling network.

The endomesoderm gene regulatory network describes en—
domesoderm gene regulation in sea urchin (Strongylocentro-
tus purpuratus), a model organism for embryonic develop-
ment. In particular, it describes the key steps in endome-
soderm development, namely, the initiation of the endome-
soderm specification signal, the maintenance of the specifi-
cation signal, the activation of the Delta/Notch signaling
pathway, and the specification of veg; endoderm. We per-
formed manual curation (detailed in [14]) by searching the
PubMed repository using “sea urchin endomesoderm” as key-
words. A regulatory pathway pertaining to the regulation of
Endo16, a critical protein in the formation of the endomeso-
derm is constructed from these publications. Nodes in this
pathway are considered as targets for regulating Endo16. De-
tails of this pathway® can be found in [14]. Table 4 reports
the curated targets of this network (denoted by I3).

Lastly, the glucose metabolism network describes the
metabolism of glucose to acetate in Escherichia coli. In
particular, it describes the Embden-Meyerhoff pathway which
focuses on glycolysis or gluconeogenesis (depending on the
flux direction), the tricarboxylic acid cycle and the car-
bon flux flow through the glyoxylate shunt. We performed
manual curation by searching the PubMed repository using
“E Coli glucose metabolism to acetate” as keywords. The
search yielded 545 publications, of which 21 were relevant
literature on glucose metabolism in FEscherichia coli un-
der aerobic conditions. We define targets in this network
as genes or proteins in the literature that caused 50% or
more change in acetate production when modified (knock-
out, knockdown or overexpression). However, not all litera-
ture included acetate production as a measurement. Hence,
we also consider genes or proteins with significant difference
in transcription or translation level between Escherichia coli
strains with distinct difference in acetate production as tar-
gets. These strains are BL21 (low acetate producer) and
gM109 (high acetate producer). Note that both acetate
and glucose are considered targets by default since they
are the input and output, respectively, of the metabolic re-
action that we are interested in. Table 5 reports the curated
targets of this network (denoted by I4).

3Since the curated model in [14] is current till 2011, we conducted
a targeted search of the relevant literature from then till 28 October
2013. The search did not yield any new insights into the curated
model.



Ras activation MAPK-PI3K Glucose- Endomesoderm Glucose
Stimulated In- | Gene Regula- | Metabolism
sulin Secretion tion
Network notation Io I 12 I3 Iy
BioModel ID BIOMD0000000161 BIOMD0000000146 BIOMD0000000239 BIOMD0000000235 BIOMD0000000244
Organism or cell | Cells of pheochromo- | Chinese hamster | Mouse pancreatic 8 | Sea wurchin em- | Escherichia coli
type cytoma in rat adrenal | ovary cells cells bryo
medulla (pc12 cell line)
and mouse embryonic
fibroblast cells (nN1H 3T3
cell line)
Related disease | Cancer (general) - Ovar- | Ovarian cancer Type 2 diabetes mel- | Embryonic devel- | Glucose to acetate
or biological | ian for this study litus opment metabolism
phenomenon

Output nodef

RasGTP on plasma mem-

Double

phosphory-

Mitochondria ATP

Endo16 protein

Acetate (ACT)

brane (RasGTP_PM) lated ERK (ERKPP) (aTP) (Protein_E_Endo16)
No. of nodes 46 36 59 622 47
No. of hyper- | 43 34 45 778 109
edges
No. of targets 5 9 6 206 16
Repository used | ClinicalTrials.gov ClinicalTrials.gov ClinicalTrials.gov PubMed PubMed
for curation
Keywords used | ovarian cancer drug ovarian cancer drug type 2 diabetes mel- | sea urchin en- | E Coli glucose
for curation litus drug domesoderm metabolism to
acetate
Date of Curation 29 Apr 2014 29 Apr 2014 25 Jan 2013 28 Oct 2013 14 Nov 2013
Unique Drugs Cu- | 458 458 617 - -
rated
Relevant Drugs | 12 22 16 - -
Curated

Table 2: Summary of the networks and curation results. The output node in round bracket is the node name used
in the model.

Network | Targets Drugs or Food Constituents
I ca’t Carboxyamidotriazole [54], Hy-
dralazine [72]
EGFR EGFR antisense pna [54]
activated EGFR Lapatinib [65], Gefitinib [54],
Iressa [54], Vandetanib [83]
EGF:EGFR Matuzumab [54], Erlotinib [54],
Panitumumab [89]
dimerized EGFR Cetuximab [5]
cells expressing mu- | Ras peptide cancer vaccine [54]
tant Ras
I, RP Laptinib [65]
Raf Sorafenib [85], Dabrafenib [54]
Raf 1s1s 5132 [15], EC0-4601 [54]
MEKPP Azp6244 [91], esk1120212 [30],
MEK162 [54], Pimasertib [54],
Trametinib [54]
PI3K xL147 [54], pk1-587 [81], PKI-179
[54], BkM120 [54], BYL719 [54],
SAR245409 [54]
AktPIP Perifosine [41
AktPIPP Perifosine [41
Aktpr1P3 Perifosine [41
Akt 2zD5363 [54], Gsk2110183 [74],
6sk2141795 [3], Mk-2206 [90],
Triciribine [54]
I, glucose alcohol [17], Avandamet [29],
Metformin [39], Benfluorex [40],
Berberine [76], cod [44], Ac-
tovegin [49], Tagatose [19],
vinegar [33], rice [27],
acetyl-CoA (mito- | Benfluorex [40]
chondrial)
activated FBPase cs-917 [18], m07803 [80]
glycerol-3- phos- | Glycerol [46]
phate
acetyl-CoA  (cyto- | Methylcobalamin [23]
plasm)
ferrocytochrome c Gynostemma Pentaphyllum
tea [7], Xanthohumol [7]

I3 Targets | Reference I3 Targets | Reference
Pmarl 10 TCF 16

HesC 10 Gro 16], [50]
Ets1 69 Nj3:TCF 16], [6]
Delta 50], [69], [10] | Blimp1l 6], [16], [47]
Notch 50 Wnt8 16

SuH 50 Otx 47

GataE 50 Eve 73
Endo16" 47) Bra 60]
Brn1/2/4 93] Dri 2]

SoxB1 2] Hox11/13b 60]

cB 16]

Table 4: Curated targets of I3. Targets marked by T are
included by default due to their obvious role in regulating

the output node.

I, Targets | Reference I, Targets | Reference
act! - Fdp [62]
crch - Icd 34
G6P 94 Icd_P 34
ICT 79 Pdh 51
PEP 22 Ppc 22
AceB 61 PpsA 57
Acoa2act 11 EIIA 31
Cya 59 EIICB 63

Table 5: Curated targets of I;. Targets marked by T has

same semantics as in Table 4.

algorithm DIFFER for finding and ranking the set of DTFs
for a given signaling network with a set of known targets.
Note that these targets may be discovered by undertaking

the curation process discussed in the preceding section.

Table 3: Curated targets of networks Iy to Io.

4. DISCRIMINATIVE TOPOLOGICAL FEA-
TURES DISCOVERY

In this section, we first formally define the notion of dis-
criminative topological feature (DTF). Then, we describe the

4.1 Discriminative Topological Feature (DTF)

Given a signaling network G = (V, E) and a set of known
targets T' C V, a topological feature is discriminative if its
distributions for T" and for V\T are “significantly” differ-
ent. The similarity between the two distributions can be
measured and used to determine the extent to which the
distributions are different.



DEFINITION 9. Given a signaling network G = (V, E)
with a known set of targets T C V', a set of features X, and
a significance threshold t, let the similarity for the distribu-
tion of the it" feature in X between T and VAT be denoted
as D(X;r), Xipn1)). Then, a feature X; € X is discrimi-
native Zf D(Xi[T]7 Xi[V\T]) <t.

In this paper, we use the p-value of the 2-tailed Wilcoxon
test to compute D(X;ry, X\ 1) 4 and set ¢ = 0.05. Specif-
ically, in the 2-tailed Wilcoxon test for two given distribu-
tions A and B, the null hypothesis Hy : A = B is tested
against the alternative hypothesis Hi : A # B. Let na be
the number of observations in A, w4 be the sum of the ranks
for observations from A and W4 be the corresponding ran-
dom variable. The p-value is given as p = Pr(Wa # wa)
and indicates the probability of seeing a value not equal to
the observed wa.

4.2 TheAlgorithm DIFFER

Algorithm 1 outlines DIFFER which consists of three phases:

feature value computation, Wilcoxon test analysis and dis-
criminative feature ranking. DIFFER first initializes the sig-
nificance threshold value ¢ and the counters  and y (Line 1).
Note that it sets t to a default value of 0.05 if it is not pro-
vided in the input. Then, in the feature value computation
phase, the values of all features in X is computed for each
node in the given signaling network. The computed feature
values for the target nodes and non-target nodes are stored
in the |X| x |T'| matrix X (Line 5) and |X| x |[V\T| matrix
Y (Line 8), respectively. Next, in the Wilcozon test analy-
sis phase, the 2-tailed Wilcoxon test is performed for each
feature in X' to determine the difference in the feature dis-
tributions between target and non-target nodes (Line 14).
Finally, in the discriminative feature ranking phase, the p-
values p; obtained from the Wilcoxon tests are compared
against the significance threshold ¢ (Line 16). Those features
whose p-values fall above ¢t are removed and the remaining
features Xy;s are ranked in increasing p-values. We delib-
erately omitted any correction for multiple comparisons be-
cause our purpose is to err on the side of including DTFs that
may correlate with the targets. Note that our later analysis
does not assume any specific level of statistical significance
for the ranked DTFs.

THEOREM 1. The worst case time complexity of DIFFER
is O(1X[|V|0(G (X)) +|X | x (ITI[V\T])2 +|V]iog(|V])) where
O(G(X)) is the worst case time complezity for computing the
given feature set X.

PRrROOF. For the feature value computation phase, a worst
case time complexity of O(|X||V]|O(G(X))) is required where
O(G(X)) is the worst case time complexity for computing
the features. Then, in the Wilcoxon test analysis phase,
O(|X| x (IT|V\T])?) time is required since each Wilcoxon
test requires O((|T||[V\T|)?) time [53]. Finally, in the dis-
criminative feature ranking phase requires O(|V|log(|V])) in
the worst case when all features are discriminative. Hence,
DIFFER requires O(|X[|V|O(G(X)) + |X| x (|T|V\T])* +
[V|log(|V])) in the worst case. This can be reduced further
if we assume bounds on O(G(X)). O

Table 6 reports the time complexities for computing var-
ious structural features considered in this paper. Observe

4Note that other similarity measures such as Hellinger distance can
also be used. However, it is orthogonal to the problem addressed in
this paper.

Algorithm 1 Algorithm DIFFER

Input: Signaling network G = (V, E), set of known targets T, set of
topological features X, significance threshold ¢ (optional)
Output: set of ranked discriminative topological features Xg;s
1: ¢, z,y < INIT(t)
2: for iteration i=1 to |X| do

3 for iteration j=1 to |V| do
4 if 1ISTARGET(V})=true then
5 X(i,o) +COMPUTEFEATUREVALUES(X;,G,V;)
6: 2 <—INCREMENTCOUNTER(z)
7 else
8 Y(i,y) < COMPUTEFEATUREVALUES(X;,G, V)
9: y <—INCREMENTCOUNTER(y)
10: end if
11: end for
12: end for
13: for iteration i=1 to |X| do
14: pi —WILCOXON (X, Y;)
15: end for

16: Xg;s < RANKDISCRIMINATIVEFEATURES(X, p, t)

Structural Features Time Complexity
Degree centrality O(|V]) [12]
Eigenvector centrality O([V|?) [37
Closeness centrality O([V[®) [36
Eccentricity centrality O(|V||E]) [77]
Betweenness centrality O(IV]IE]) [9]
Bridging centrality O(|V|* + |E]) [12]
Bridging coefficient O([V]%) [12]
Clustering coefficient O([V]%373) [86]
Proximity prestige O(IV|? + |E|) [12
Target downstream effect | O(|[V]Z + |E|) [12

Table 6: Time complexities of structural features.

that closeness centrality computation has the maximum worst
case complexity (O(|V]*) [36]) amongst all features.

THEOREM 2. The worst case space complexity of DIFFER
is O(|E| + |X][V]).

PRrROOF. First, the algorithm requires O(|V| + |E| + |X])
space for storing the inputs to the algorithm. Then, in the
feature value computation phase, a worst case space com-
plexity of O(]X||V]) is required for storing all the feature
values. Next, in the Wilcoxon test analysis phase, O(|X])
space is needed to store the p-values obtained. Finally, in
the discriminative feature ranking phase, O(|X]) space is
again needed to store the ranks of all features in the worst
case when all features are considered discriminative. Hence,
DIFFER requires O(|E|+|X||V|) space in the worst case. [

Remark. Observe that the performance of DIFFER is af-
fected by the target curation quality. The manual cura-
tion is limited by coverage of the reference repository (e.g.,
PubMed). Literature evidence which are not found in the
repository will not be curated and potential targets may be
missed. These missing targets may impact DIFFER since the
DTFs are discovered by comparing the feature distribution
of the targets against the non-targets. The missing targets
would be likely to affect the results if they have different
feature distributions from the known targets. This impact
could be significant when the set of missing targets is large
relative to the size of the set of known targets. For instance,
a feature that is deemed discriminative based on the known
target size may be considered non-discriminative when the
missing targets are considered.

5. EMPIRICAL STUDY

DIFFER is implemented in Java and the Wilcoxon test
is performed using R. The experiments are performed on



a computer system using a 64-bit operating system with
8GB RAM and a dual core processor running at 3.60GHz.
In this section, we investigated the performance of DIFFER
using the signaling networks and curated targets described
in Section 3. Unless specified otherwise, we set ¢t = 0.05.

5.1 DTFsof the Networks

In this set of experiments, we applied DIFFER to the five
signaling networks to obtain sets of ranked DTFs. Table 7
reports the ranks of the DTFs for these networks. Note that
for 14, the default significance threshold ¢ = 0.05 did not
return any DTF. Hence for this network, we relaxed t to 0.2
for the purpose of generating DTFs for our empirical study.
We can make the following observations. First, the signif-
icance threshold directly affects the selection of DTFs and
the size of Xy4;s but not their ranking. For instance, for L4,
|Xais| is 0 and 3 when ¢ is 0.05 and 0.2, respectively. The
choice of the value of ¢ is application-specific. Second, the
number of DTFs differs across networks. In some networks
such as I3, the targets are characterized by as many as nine
features whereas in another network Ip, only four features
are discriminative enough. Note that it is also possible for a
network to have no DTF (e.g., I4 for ¢ = 0.05). This implies
that the feature set X may not be appropriate for character-
izing the targets in this network and additional features need
to be considered. Third, different DTFs perform differently
on different networks. For instance, bridging centrality, a
feature found to yield good targets in a variety of PPI net-
works [28] performed well on I; and I3, but poorly on I and
I4. Hence, a single DTF cannot be used for distinguishing
targets from mon-targets in all signaling networks.

5.2 DTFsFindsBiologically Relevant Targets

In this set of experiments, we examine the discriminative
power of DTFs in terms of identifying known targets in the
upper 50-percentile of nodes ranked according to the DTFs.
Note that a low p-value in the 2-tailed Wilcoxon test in-
dicates a difference in the feature distribution between the
targets T and non-targets V\T. This difference could be
due to the targets either generally having higher or lower
values than the non-targets. Hence, ranking based on a DTF
may result in majority of the known targets either in the
upper 50-percentile rank (high-to-low DTF) or the lower 50-
percentile rank (low-to-high DTF). For instance, in Io, rank-
ing based on Kuyndir, @ low-to-high DTF, resulted in 4 out of
the 5 known targets in the lower 50-percentile. For simplic-
ity, we redefine the low-to-high DTFs (marked with *) using
their inverse values (i.e., % rather than z) so that majority
of known targets are found in the upper 50-percentile.

Figure 3 plots the performance of the DTFs. Observe that
71% of the features are able to identify at least 70% of targets
in the upper 50-percentile rank of the nodes. In particular,
all the DTFs in I identified at least 83.3% of the targets.
In Ip and I;, we note that a DTF that is ranked higher than
another is also able to identify a higher percentage of targets.
For instance, 3, the top-ranked feature in Iy, identified 90%
of the targets compared to u (ranked 6'"), which identified
only 60% of the targets.

We further examine non-target nodes that are present in
the upper 50-percentile ranks of the top-3 DTFs in various
networks. The goal is to find out how relevant these nodes
are as targets for the networks. Note that we exclude I4
from this particular study as its DTFs have p-values greater
than 0.05. Several of these non-target nodes are found to
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Figure 3: Percentage of targets in upper 50-percentile
of nodes when ranked using DTFs.

be promising therapeutic targets. Due to space constraints,
we only highlight some of them here. In Iy, diaglycerol
(pag), a non-target node, is implicated in cancer cell mi-
gration and facilitates signaling in cancer cells [4]. More-
over, a recent study reveals that deletion of pag kinase, an
enzyme that metabolizes pag, improves the clinical poten-
tial of chimeric antigen receptor (CAR)-transduced T cells
in the treatment of cancer [66]. In a review of novel treat-
ments of type 11 diabetes mellitus, several enzymes (e.g.,
phosphoenolpyruvate (PEP) carboxykinase) and mitochon-
drial complex I (rotenone-sensitive NADH:ubiquitone oxi-
doreductase) have been proposed for treating diabetes [82].
In particular, PEP carboxykinase regulates the production
of PEP, a non-target in I2. NADH, another non-target in I3 is
a component of mitochondrial complex 1. In summary, DTFs
demonstrate promising results toward identifying biologically-
relevant targets.

5.3 Corredation of DTFs

Next, we examine the correlation of DTFs to gain more
insights on their characteristics. Table 8 reports DTFs hav-
ing correlation greater than 0.68°. We make the following
observations. First, DTFs are more likely to be positively-
correlated than negatively-correlated. Second, the extent
of correlation amongst DTFs differ across networks. For in-
stance, all the DTFs in Ip have strong correlation whereas
none of the DTFs in 14 are correlated. Third, degree central-
ities tend to be strongly correlated to others. For instance,
Ototar is strongly correlated with Kynair in Ip and Is.

5Correlation in the range of [0.68-1] is considered strong [78].



Features 1o I, Iy I3 I,

p-value | Rank [ p-value Rank | p-value | Rank [ p-value Rank | p-value | Rank
Undirected clustering coefficient | 0.02 1 0.014 5 0.016 5 3.69x10~ " 4 0.211 -
Kundir
Out degree 0, 0.024 2 0.013 4 0.006 2 1.11x10~ 7 6 0.652 -
Total degree 0441 0.039 3 0.066 - 0.009 3 7.28x10 7 7 0.848 -
In degree 0;, 0.043 4 0.59 - 0.035 6 0.124 - 0.557 -
Middleman clustering coefficient | 0.763 - 0.89 - 0.051 - 5.60x10™ 2 0.117 1
Kmid
Target downstream effect w 0.511 - 0.085 - 0.107 - 0.033 9 0.142 2
Bridging coefficient 7 0.801 - 0.19 - 0.037 7 0.177 - 0.155 3
Bridging centrality ¢ 0.077 - 1.77x107° | 2 0.347 - 6.67x10" 1T [ 1 0.23 -
Proximity prestige u 0.48 - 0.022 6 0.015 4 0.902 - 0.349 -
Eigenvector centrality « 0.198 - 0.116 - 0.003 1 3.51x10~ " 3 0.433 -
Betweenness centrality ¢ 0.186 - 1.92x10~° [ 3 0.139 - 3.54x10~° 5 0.475 -
Closeness centrality 0.902 - 3.52x10~ 7 [ 1 0.015 0.118 - 0.755 -
Cycle clustering coefficient k.y¢ 0.763 - 0.828 - 0.051 - 0.472 - 0.793 -
Eccentricity centrality ~ 0.698 - 0.03 7 0.176 - 0.012 0.798 -
In clustering coefficient x;,, 0.763 - 0.594 - 0.259 - 0.115 - 0.923 -
Out clustering coefficient kot 0.763 - 0.94 - 0.491 - 0.637 - 0.978 -

Table 7: Rank of DTFs.

5.4 Effect of Varying Target Set Size

Recall that the set of curated targets may miss some
known targets which inevitably affects the size of the known
target set. In this set of experiments, we study the influence
of the size of targets and non-target sets on DTF identifi-
cation on I3, the largest network in this study. First, we
examine the distribution of the top-3 DTFs. As observed
in Figures 4(a)-(c), the QQ@-plots® indicate that the distri-
butions of targets and non-targets are different. Next, we
simulate the scenario of missing targets in the curated set
by randomly adding nodes from the non-target set to the
target set. Figures 4(d)-(1) depict that varying the number
of non-target nodes do affect the distribution. When we per-
form the Wilcoxon test for these new target sets, we observe
that modifying the target set did not significantly affect DTF
identification since seven’ out of the nine cases considered
in Figure 4 have p-values lesser than 0.05. Hence, DIFFER
is relatively robust against changes in target set size.

5.5 Roleof Bridging Nodes

The experiments in Section 5.1 reveal that bridging cen-
trality does not necessarily appear among the top-ranked
DTFs. Note that this finding is in contrast to recent studies
where bridging centrality was significant in characterizing
nodes as drug targets [28]. In our final set of experiments,
we ask whether bridging nodes (nodes with high bridging
centrality) lie in the vicinity of the targets or have a role in
regulating these targets. Hence, we studied two networks,
one in which bridging centrality performed well (I;), and the
other in which it performed poorly (I4). We identified the
top-5 bridging nodes, and for these bridging nodes that are
not targets, we examined their neighbourhood to see how far
they are from known targets. In both networks, we found
that bridging nodes are located near target nodes (within 2
hops). Note that a larger sample size would be required for
concluding whether bridging nodes are significantly closer
to target nodes than would be expected by chance, but our
preliminary work raises the possibility that bridging central-
ity may have indirect predictive value in networks where it
does not predict targets directly. Biologically, it is possible

51n a QQ-plot (e.g., Figure 4), two distributions are identical if the
plotted values (blue ‘+’) all fall on the line y=x (red line).

7FOI‘ bridging centrality and eigenvector centrality, the p-values were
0.695 and 0.698, respectively when 50 non-target nodes were added.

Network | Positively-Correlated Negatively-Correlated
DTFs DTFs
Io (Oout,Ototar), (Oout,Oin), | (Kundirs Oout),
(atof,al,; ezn) (Kundw-, 9tof,ul),
(Kundir, Oin)
Iy (8,9), (8,7) (€,9), (9, Kundir)
T2 (@, Oout), (o, Ototar), | (@, Kundir),
(v, 1), (,B), (a,0in), | (Bout,Kundir)s
(Oouts Ototar)s (BoutsOin)s | (Ototal, Kundir),
(Ototars 1), (Ototars B), | (s Kundir)s  (Bs Kundir)s
(Ototal; Oin), (k. B) Kundirs Oin
(4, 0in), (B,0in)
I3 (¢, 9), (Fmid; ), | (@ Kundir), (@,0)
(047 etuf,al)y (K'u,nd'iry 5),
(Fundir, w), (6,w),
(Oouts Ototar),  (Oout, ),
(9tm,u,z-, 'Y)
1y - -

Table 8: DTFs with strong correlation.

that target proteins may be disproportionately regulated by
indirect effects of proteins that function as bridging nodes.

6. CONCLUSIONSAND FUTURE WORK

In this paper, we present an algorithm called DIFFER that
analyzes the topology of a signaling network to identify a
set of discriminative topological features (DTFs) for distin-
guishing target from non-target nodes. We investigated 16
topological features over five signaling networks whose tar-
gets were determined by extensive manual curation. DIFFER
computed the DTF results, and we observed that there was
no single DTF that could characterize targets for all signal-
ing networks. This finding contrasts with the results in [28]
where bridging centrality was leveraged to identify drug tar-
gets in multiple PPI networks. It also contrasts with the find-
ings in [71] where low clustering coefficient feature is used
as a predictor of disease-related genes in diabetes-related
gene-gene interaction network. Based on the results of this
paper, we believe that characterization of targets in signal-
ing networks is highly dependent on network topology and
demands analysis of multiple structural features. The re-
sults of this paper are an important first step in this regard.
As part of future work, we aim to investigate the effect of
using other metrics (e.g., Kolmogorov-Smirnoff statistics) to
identify DTFs and to examine how DTFs can be leveraged to
provide superior solution to the target prioritization problem
in signaling networks.

Acknowledgments. This work was supported in part by a Sin-
gapore MOE AcRF Tier 1 Grant RGC 1/13.
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