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ABSTRACT

Cell signaling pathways and metabolic networks are
often modeled using ordinary differential equations
(ODEs) to represent the production/consumption of
molecular species over time. Regardless whether a
model is built de novo or adapted from previous
models, there is a need to estimate kinetic rate con-
stants based on time-series experimental measure-
ments of molecular abundance. For data-rich cases
such as proteomic measurements of all species,
spline-based parameter estimation algorithms
have been developed to avoid solving all the ODEs
explicitly. We report the development of a web
server for a spline-based method. Systematic
Parameter Estimation for Data-Rich Environments
(SPEDRE) estimates reaction rates for biochemical
networks. As input, it takes the connectivity of
the network and the concentrations of the molecular
species at discrete time points. SPEDRE is intended
for large sparse networks, such as signaling
cascades with many proteins but few reactions per
protein. If data are available for all species in the
network, it provides global coverage of the par-
ameter space, at low resolution and with approxi-
mate accuracy. The output is an optimized value
for each reaction rate parameter, accompanied by
a range and bin plot. SPEDRE uses tools from
COPASI for pre-processing and post-processing.
SPEDRE is a free service at http://LTKLab.org/
SPEDRE.

INTRODUCTION

Mathematical modeling of biochemical network dynamics
using ordinary differential equations (ODEs) has yielded

impressive advances in our understanding of complex bio-
logical systems (1). When constructing an ODE model,
there is often a need to estimate kinetic rate constants
based on time-series experimental measurements of mo-
lecular concentrations or enzyme activities. Even when
time-series experimental measurements of all species are
available [such as by using stable isotope labeling by
amino acids in cell culture (SILAC) proteomics (2)],
estimating the rate constants is still a difficult non-linear
optimization problem (3). Many widely used methods,
collected into popular software packages such as
COmplex PAthway SImulator (COPASI) (4), are applic-
able to this parameter estimation problem. Methods have
traditionally been classified as local, global or hybrid glo-
bal+local methods (5,6).
The traditional application of parameter estimation for

modeling network dynamics has been to small biochem-
ical networks with sparse data sets. With the growing ease
of measuring complete proteomes (7) and with the
assembly of large network models, needs have expanded
to include to data-rich approaches to parameter estima-
tion, sometimes called spline-based collocation methods
(5,8–10). Spline-based collocation methods exploit
complete or nearly complete data sets to interpolate
directly the slopes of concentration over time, instead of
relying on numerical simulations to compute the deriva-
tives of the ODEs. Spline-based collocation methods have
not previously been implemented in any parameter esti-
mation web server. The method of Systematic Parameter
Estimation for Data-Rich Environments (SPEDRE) (11)
uses a spline-based collocation approach and coarse-
grained discretization to provide approximate heuristic
search of the global parameter space, with excellent scal-
ability for large networks. However, SPEDRE is designed
only for problems with low-degree networks (few reac-
tions per protein, but no limit on the number of
proteins). Although there are many algorithms for param-
eter estimation [reviewed in (12,13)], we are not aware of
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any parameter estimation web servers, other than
COPASI (14,15) and SPEDRE.

PROCESSING METHOD

Parameter estimation in biological networks is challenging
because the parameters are interdependent, which makes
them impossible to estimate individually. Even if each par-
ameter can take on only a fixed number of possible values,
the possible combinations of these parameter values
becomes astronomical, growing exponentially with
respect to the number of reactions. SPEDRE exploits
complete data sets to interpolate the slopes (concentration
change over time) instead of simulating the whole system,
and it exploits the low degree of the network to construct a
linear number of sparsely connected low-dimensional
subproblems.
The pipeline for SPEDRE, illustrated in Figure 1,

consists of five stages: input, pre-computing discretized
tables for each subproblem, Loopy Belief Propagation to
merge the subproblems, local optimization to refine the
coarse-grained solution and output. During the input
stage, SPEDRE requires the user to provide the network
connectivity, the reaction types (Michaelis–Menten, mass
action kinetics, etc.), the time-series measurements and
some optional runtime settings. In the discretization
stage, SPEDRE transforms the continuous range of rate
constants into discrete bins, and it pre-computes lookup
tables with discretized solutions to each ODE. The next
stage must construct a single system-wide parameter
vector by looking up and merging the best parameter com-
binations from the low-dimensional subproblems. We do
this heuristically using Loopy Belief Propagation (16), also

called ‘message passing’, a probabilistic network inference
technique that computes probability distributions for the
parameters and sends the distributions as messages across
the edges of the network. Loopy Belief Propagation is an
iterative heuristic that terminates by convergence or when
the specified maximum number of iterations is reached.
On termination, Loopy Belief Propagation provides
optimized bins for all rate constants. This set of bins
provides a starting point for the post-processor to refine,
using the Levenberg–Marquardt numerical method of
local optimization (17). In essence, SPEDRE is a hybrid
global+local optimization method, but unlike other
hybrid global+local methods, the global portion (called
SPEDRE-base) does not use stochastic sampling. The
final output of SPEDRE is a plot of the bins provided
by Loopy Belief Propagation, as well as a vector of the
optimized rate parameters. Our previous work specified
the SPEDRE algorithm in detail (11), whereas the
current work aims to describe the web server interface.

Asymptotic analysis of the underlying SPEDRE-base
algorithm (11) reveals attractive properties of the
method because the time complexity scales exponentially
with the network degree, but it scales efficiently
(polynomially) with the number of species, the number
of reactions and the size of the data set.
Correspondingly, the method scales well on biological
pathways with a bounded number of reactions per
species. Dense networks with hub-like species have high
network degree and are unsuitable for the SPEDRE algo-
rithm. Our web server handles these cases simply by
running the Levenberg–Marquardt algorithm (17) instead.

The SPEDRE-base algorithm was implemented in C++
with an interface to COPASI (version 4.6, build 32) for the
Levenberg–Marquardt algorithm. The web server version
of SPEDRE was implemented using the Opal toolkit, as
introduced in (18). To display the customizable bin plot of
SPEDRE results, Google Chart API (Google Inc.) was
used. As the features of Opal and Google Charts API
grow over time, the functionality of the SPEDRE web
server will grow as well.

INPUT

SPEDRE requires two main inputs from users: the con-
centrations of all the molecular species and the biochem-
ical reactions. The concentrations of the molecular species
would come from proteomic experiments, from computa-
tional hypotheses that merge published sub-networks or
from any source that specifies the abundance of every
species, at a set of discrete timepoints. This requirement
for input of all species is highly restrictive, but it allows
SPEDRE to focus on data-rich problems, which are a
specialized but growing segment of parameter estimation
work. The concentrations must be specified in a comma
separated value (CSV or TXT) file. The file format is com-
patible with time-course simulation output from the
COPASI software, where the first line specifies the
headers (time and species names). The first column of
each additional row specifies the time value, with the
species levels in the remaining columns. If a data point
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Figure 1. Pipeline of the processing methods underlying the SPEDRE
web server.
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is found to be invalid, the relevant time point is removed
from the system before performing rate constant estima-
tion. If there is greater incompleteness or sparsity in the
available measurements, users should use the CopasiWeb
(14) service instead.

The biochemical reactions must be specified as an
XML file in COPASI_ML format (4), which can be
obtained from SBML format using a link to the
conversion service in CopasiWeb (14). This format
includes ‘rate laws’ with predefined reaction types,
which are necessary for constructing the correct types of
kinetic parameters. SPEDRE is currently restricted to
the following reaction types: ‘Michaelis-Menten catalysis’,
‘Mass action (irreversible)’ and ‘Enzyme simple’
[rate_constant� (enzyme)� (substrate)]. In other words,
a reversible reaction must be represented using two
separate reactions, one in each direction; reactions with
high-order combinations must be re-expressed as a series
of subreactions. Future work may automate the conver-
sion process. The SMBL conversion service provided at
CopasiWeb (14), may disrupt the names of the reaction
types (‘rate laws’), in which case users must change the
names of the reaction types manually.

The web server homepage provides descriptions and il-
lustrations for several published pathways, including the
Akt pathway (19), the MAPK pathway (20) and a
pathway of Actin Filament Assembly-Disassembly (21).
Also available is a spectrum of artificial networks
(circular or tree-shaped) with widely varying sizes.

A set of default parameters can be modified using the
submission form, if users wish to adjust how SPEDRE
executes. The main options are the number of bins for
discretizing the parameter ranges, and the number of iter-
ations for Loopy Belief Propagation. In addition, the bin
spacing can be set to linear or logarithmic scaling. The
upper and lower bounds of the rate constants can be
specified globally, or individual rate constants can
override the upper bound and lower bound if these are
specified in the network connectivity input file. The
maximum number of iterations can be set to zero if
users wish to perform a standalone local search. The
anticipated error rate is an option for theoretical calcula-
tions, and it allows users to add Gaussian noise to the
observed data. Another option for specialized users,
called ‘samples per voxel’, allows each voxel of parameter
space (each set of parameter bins) to be evaluated by
sampling multiple random points in the voxel, instead of
using the voxel midpoint.

OUTPUT

An example execution based on the MAPK cascade is
shown in Figure 2. Using the web interface, users can
submit input files that follow the specified formats
(Figure 2, top box), and SPEDRE performs the computa-
tion task while simultaneously displaying the execution
page (Figure 2, middle box).

Different execution specifications may result in different
runtime performance, and some jobs may require several
hours to complete. Users may wish to bookmark the

location of the output page for a later visit. A status
page is linked to the execution page and shows the per-
centage of the overall task that has been completed. Users
are advised to consult the asymptotic analysis of
SPEDRE-base algorithm (11) when adjusting the
SPEDRE execution options beyond the default values.
On completion, SPEDRE returns an estimated range for
each rate constant, in the form of a bin plot, as shown in
Figure 2 (bottom box). A bin plot is a visual representa-
tion of the resulting voxel in high-dimensional space,
which gives users an impression of the exponential
number of possible combinations of rate constants, even
in a coarsely discretized search space. Each bin indicates a
range in which the estimated rate parameter lies. Finally,
the bin midpoints are used as a starting point for local
optimization, and the refined set of parameters are
output as a vector of floating point numbers.
The bin plot in Figure 2 was generated using the Google

Chart API (Google Inc.), which imposes certain con-
straints, including the maximum URL length of 2048
characters (for plot formatting) and maximum plot size
of 300 000 pixels. Users may encounter cluttered plots
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Figure 2. SPEDRE execution results using the MAPK network derived
from (20). Additional information about this test case is provided on
the server website.
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for large network size (>30 rate constants). As the API is
actively developed with large user base across the industry,
this current limit will be overcome with new updates of the
API.

PERFORMANCE

Depending on execution configuration, SPEDRE can
achieve various performance outcomes. Table 1 shows
the web server’s performance on five test cases using noise-
less and 20% noise data. The weighted sum-of-square
error (SSE) represents how well a model with estimated
parameters could fit the input time-series data.
These test cases used coarse discretization to run

quickly at the expense of accuracy. For the PI3K/Akt
cascade and MAPK cascade, the objective function was
low, indicating good match with data. (A good match with
data means the parameterized model gives plausible ex-
planations of the data, but alternative models or param-
eters may also exist). The runtime of SPEDRE base (i.e.
SPEDRE without Levenberg–Marquardt) was close to the
total SPEDRE runtime, indicating that the hybrid global-
local approach incurs low additional runtime cost
compared with global search alone. The runtime
measures also provide an empirical demonstration that
SPEDRE runtime scales efficiently with the size of the
input network and poorly with the degree of the
network. Specifically, the high-degreed Actin Filament
Assembly/Disassembly pathway has only 14 species and
25 reactions, whereas the low-degreed circular network
has 80 species and 80 reactions; yet, execution on the
latter network completes �23 times faster than the former.

DISCUSSION

SPEDRE has been implemented as a web-based service
for performing rate constant estimation on biochemical
networks, such as cell signaling pathways and metabolic

networks. SPEDRE uses a spline-based collocation
approach, requiring extensive data as input and providing
efficient coverage of enormous parameter spaces. The
computational power of a web server makes it suitable
for intensive rate constant estimation jobs. The server has
dynamic display of the bin plot, as shown in Figure 2
(bottom box), which is customizable using JavaScript.
SPEDRE performs preprocessing of user inputs to elim-
inate missing or invalid data points from the data file. In
the scenarios involving a dense network or other features
that violate the requirements of SPEDRE, the web service
will perform Levenberg–Marquardt optimization only, as
an automatic ‘rescue’ for the parameter estimation
problems.

This service is not predictive because measured rate con-
stants are not yet available for pathways of significant size.
For users who wish to address the accuracy of parameter
estimation as a purely mathematical problem, artificial
data sets are available and the weighted SSE is displayed.
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