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ABSTRACT

Motivation: Computational models of biological signalling networks,

based on ordinary differential equations (ODEs), have generated many

insights into cellular dynamics, but the model-building process typic-

ally requires estimating rate parameters based on experimentally

observed concentrations. New proteomic methods can measure con-

centrations for all molecular species in a pathway; this creates a new

opportunity to decompose the optimization of rate parameters.

Results: In contrast with conventional parameter estimation methods

that minimize the disagreement between simulated and observed con-

centrations, the SPEDRE method fits spline curves through observed

concentration points, estimates derivatives and then matches the de-

rivatives to the production and consumption of each species. This

reformulation of the problem permits an extreme decomposition of

the high-dimensional optimization into a product of low-dimensional

factors, each factor enforcing the equality of one ODE at one time

slice. Coarsely discretized solutions to the factors can be computed

systematically. Then the discrete solutions are combined using loopy

belief propagation, and refined using local optimization. SPEDRE has

unique asymptotic behaviour with runtime polynomial in the number of

molecules and timepoints, but exponential in the degree of the bio-

chemical network. SPEDRE performance is comparatively evaluated

on a novel model of Akt activation dynamics including redox-mediated

inactivation of PTEN (phosphatase and tensin homologue).

Availability and implementation: Web service, software and supple-

mentary information are available at www.LtkLab.org/SPEDRE

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Dynamic behaviours of biochemical networks can be captured

by ordinary differential equation (ODE) models that compute

the change of molecular concentrations with respect to

time (Fall et al., 2002; Palsson, 2006). For most biochemical

pathways with known topology, most reaction rate constants

(i.e. the coefficients of the differential equations) are not

available from direct experiments. Rate parameters are typically

estimated by regression, in other words by fitting the global

behaviour of the simulated model to the experimentally observed

concentrations. This is a difficult high-dimensional non-linear

problem, and search strategies often experience poor conver-

gence and local optima (Kleinstein et al., 2006). The rate param-

eter estimation problem can naturally be formulated as

minimizing a sum of squared errors (SSE), where each error is

a difference between simulated concentration and observed con-

centration, and the summation is over time points and/or experi-

mental treatments. Optimizing this type of SSE objective

function can be attacked using a variety of ‘traditional’ global

and local search methods: LM (Levenberg–Marquardt, local),

SD (steepest descent, local), SRES (stochastic ranking evolu-

tion strategy, global), PSO (particle swarm optimization,

global) and GA (genetic algorithm, global) (Fogel et al., 1991;

Kennedy and Eberhart, 1942; Levenberg, 1944; Marquardt,

1963; Michalewicz, 1994; Runarsson and Yao, 2000). Local

and global search methods both have drawbacks, and global–

local hybrid searches have also become popular (Ashyraliyev

et al., 2008; Fomekong-Nanfack et al., 2007; Rodriguez-

Fernandez et al., 2006).

Traditional search methods generate a full vector of rate par-

ameters, simulate the model with this full set of parameters and

then accept, reject or adjust the parameters based on how well

the simulation agrees with experimental measurements. For net-

works with few unknown parameters, these ‘simulate-and-match’

methods have been successful at finding good values, or multiple

good candidates. The search space for parameter vectors is ex-

ponential, and the inevitable trend with any type of exponential

growth is that there will eventually be a large enough number of

unknown parameters, such that reasonable sampling will not

explore very many of the ‘basins of convergence’, and the results

will deteriorate. Indeed many high-impact models of biological

pathways continue to be built without automating the parameter

estimation process (Albeck et al., 2008; Basak et al., 2007; Purvis

et al., 2008).*To whom correspondence should be addressed
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In contrast to standard ‘simulate-and-match’ methods of par-
ameter estimation, spline-based collocation methods have re-
cently been developed that use experimental observations of a

protein over time to interpolate the time derivative of the con-
centration, rather than computing the derivatives based on simu-
lating the ODEs. Traditional methods minimize the violation of

experimental observations, subject to obeying the ODE trajec-
tories, while the spline-based collocation methods can be seen as
optimizing a dual-like objective function because they minimize

the violation of the ODE trajectories, subject to obeying the ex-
perimental observations. Note that the spline-based collocation
methods require an extensive input dataset with observations for

many or all of the proteins. In the past, few large networks had
such comprehensive measurements available, but recent trends in
proteomic technology (Zhang and Neubert, 2009) suggest that

data-rich cases may be increasingly common in the future.
Several spline-based collocation methods have been published

recently for the context of biological networks. A spline-based

collocation scheme for parameter fitting problems using a mod-
ified data-smoothing method and a generalization of profiled
estimation was proposed by Ramsay et al. (2007). A similar

method for problems with high noise and short time-course
was introduced by Brewer et al. (2008). Zhan and Yeung
(2011) used non-linear programming (NLP) to optimize the

dual objective. Several ‘decoupling’ strategies (Jia et al., 2011;
Vilela et al., 2009; Voit and Almeida, 2004) also use some
forms of ‘slope approximation’ from time-series data to avoid

doing multiple simulations. Estimating ODE parameters has
been studied in the mathematical literature for decades, and an
important class of data-rich methods called ‘multiple shooting’

(Bock, 1983; Bock and Schlöder, 1986a, b) has recently been
applied to biological networks (Peifer and Timmer, 2007).
To the best of our knowledge, no data-rich parameter estima-

tion methods have implementations publicly available for prac-
tical problems with biological networks. The asymptotic runtime
of data-rich methods has also been neglected. Many data-rich

methods have been published with claims of good accuracy, but
to the best of our knowledge, efficiency and runtime have not yet
been compared with state-of-the-art, ‘simulate-and-match’ par-

ameter estimation methods.
Scalability with network size is a major remaining challenge in

the parameter estimation field, regardless of the objective func-

tion or optimization approach. A common strategy for large
systems is to decompose the problem. However, the objective
functions of parameter estimation are not generally decompos-

able. Some decomposition approaches exploit specific situations,
such as having derivatives available at all timepoints (Chou et al.,
2006), or having small sub-networks connected by species with

observed concentrations (Koh et al., 2006). The dual-like object-
ive functions of spline-based collocation methods are not readily
decomposable, but they do exhibit the important property of

sparse interdependence (‘locality’) between the variables. This
locality can be a basis for conditional decomposition.
Belief propagation [see (Meltzer et al., 2009) review and (Pearl,

1988) textbook] is an inference method for probabilistic graph-
ical networks with sparse interdependence or locality. It can
compute the maximum a posteriori (MAP) values for variable

parameters in a factor graph, given joint probability distributions
that describe the dependencies between adjacent variables. For

acyclic graphs, belief propagation guarantees exact optima, and

for general graphs, a variant called ‘loopy belief propagation’

(LBP) has had empirical success at approximating the MAP

(McEliece et al., 1998; Murphy et al., 1999).
Our method of Systematic Parameter Estimation in Data-Rich

Environments (SPEDRE) optimizes the dual objective approxi-

mately, via LBP. The innovation is conditional decomposition of

the problem into local terms, with pre-computed look-up tables

for the discretized solutions to the local terms of the dual object-

ive function. SPEDRE provides dramatic improvement in em-

pirical efficiency, and in effect brings the spline-based collocation

(dual objective) methods to the same level of efficiency as the

state-of-the-art (primal objective) methods. Asymptotic runtime

is polynomial with respect to the number of species, parameters

and timepoints in the biological networks, while it is exponential

only in the degree of the network.

Finally, we compare the scalability and robustness of

SPEDRE against state-of-the-art standalone and hybrid param-

eter estimation methods, using both a spectrum of artificial cases,

and also a novel model of Akt activation based on our previous

experimental studies of Akt (Lim and Clement, 2007). Aberrant

hyper-activation of the Akt pathway has been detected in up to

50% of all human tumours, and the Akt pathway is an attractive

target for anti-cancer drug discovery (Mitsiades et al., 2004). Our

model of Akt includes oxidative inactivation of the lipid phos-

phatase and tensin homologue on chromosome 10 (PTEN), as

well as the phosphatidylinositol 3-kinases (PI3K) activation, as

competing regulators of Akt in serum-stimulated fibroblasts

(Kwon et al., 2004; Testa and Bellacosa, 2001). A more detailed

understanding of PTEN dynamics is important because many

cancers activate Akt through disruptions of PTEN.

2 PRELIMINARIES

2.1 Ordinary differential equations

The production and consumption of each species in a biochem-

ical system can thus be described using ODEs. For example,

consider a two-species artificial pathway A! B. Using k1 (and

k2) to denote the forward (and reverse) reaction rates, we can

model the system as follows:

d
dt Aðt,

~kÞ ¼ �k1Aðt, ~kÞ þ k2Bðt, ~kÞ

d
dt Bðt,

~kÞ ¼ k1Aðt, ~kÞ � k2Bðt, ~kÞ

(
ð1Þ

For the simplicity of later figures, our example uses mass

action, but more general equations are also permitted. Solving

these equations (1) provides the time evolution of the species,

dependent on rate parameter vector ~k. The inverse problem,

estimating the rate parameters from observed levels of the spe-

cies, is a deceptively difficult non-linear optimization problem

(Kleinstein et al., 2006). We define the degree of each ODE to

be the number of terms in its right hand side, analogous to the

node degree in a biochemical network diagram.

2.2 Rate constant estimation objective

To estimate the rate constants, the most standard (‘primal’) ap-

proach is to use a non-linear least squares technique to minimize
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the weighted SSE objective function

min
~k

X
e2Experiments

X
i2Species

NtP
j2Timepoints

xdatae, i ðtjÞ
� �2

�
X

j2Timepoints

xdatae, i ðtjÞ � xsime, i ðtj,
~kÞ

� �2 ð2Þ

where Nt is the number of observed timepoints per experiment,

xdatae, i ðtjÞ is the observed concentration of species i in experiment e

and xsime, i ðtj,
~kÞ is the simulated level of species i in experiment e as

a function of time and rate constants ~k. SSE is the most widely

used objective for evaluating the success of parameter estimation,

but SSE grows with the size of the network. Therefore, we also

use the species maximum relative error (MRE), and parameter

percentage error (PPE), discussed in Supplementary Text S1 and

defined as follows:

Species MRE ¼ max
i, j

NtP
m

xdatai ðtmÞ
� �2 � xdatai ðtjÞ � xsimi ðtj,

~kÞ
� �20

B@
1
CA � 100%

ð3Þ

Median PPE ¼ median
i

kestimated
i � knominal

i

�� ��
knominal
i

� 100%

� �
ð4Þ

Maximum PPE ¼ max
i

kestimated
i � knominal

i

�� ��
knominal
i

� 100%

� �
ð5Þ

Note that the PPE metric requires the knowledge of the nom-

inal parameter values, which is only feasible in simulated tests.

3 ALTERNATIVE OBJECTIVE FUNCTION

3.1 Error terms of dual objective function

The error terms of our dual objective function, "e,i,j, minimize the

disagreement between the right hand sides of the ODEs [which

we denote fODE
i , see Equation (1)] and the species derivatives

(computed using the species derivatives interpolated from the

observed data):

"e, i, j ¼ f ODE
i ð ~kÞ �

d̂

dt
xdatae, i

���spline
t¼tj

~k
� � !�����

����� ð6Þ

indexed over experiments e, species i and timepoints tj. xdatae, i are

the time-series observations of species i in experiment e. The

interpolated derivative d̂=dt with splines is explained in

Supplementary Text S2. The "e,i,j terms are similar to the terms

of other spline-based collocation methods, but we remark that

each "e,i,j is defined in terms of a small subset of the parameters ~k,
while each term of a ‘primal’ SSE objective uses all parameters

via simulation.

3.2 Product of functions

Among different schemes for combining error functions into an

objective (e.g. sum of squares), we chose multiplication.

min
~k

POF ¼ min
~k

Y
e2Experiments

Y
i2Species

Y
j2Timepoints

"e, i, j ð7Þ

The product of functions (POF) objective will need to be eval-
uated in practical tests because it has numerical vulnerabilities,

such as going to zero if any single term goes to zero. The benefit
of using the POF objective is that it is a decomposable expression
to facilitate belief propagation for probabilistic inference on a

factor graph (Section 4.1). By inspection, the POF is minimized
when individual error terms "e,i,j are minimized. Assuming the

network is low-degree, each "e,i,j is a low-dimensional term invol-
ving a small subset of the rate parameters ~k. The "e,i,j error terms

cannot be optimized as independent problems because the sub-
sets of ~k are not mutually exclusive. However, the low

dimensionality of "e,i,j means we can pre-compute solutions for
each "e,i,j sub-problem systematically. We pre-compute a com-

plete look-up table Te,i,j that gives the value of "e,i,j for each
possible (discretized) combination of the relevant ~k parameters.

To combine many low-dimensional systematic "e,i,j solutions into
an optimal high-dimensional parameter vector is a problem that

resembles belief propagation, except with a sparsely connected,
cyclic graph instead of an acyclic graph. We next describe in

Section 4 how to compute a global estimate of ~k as a graphical
inference problem using LBP.

4 LOOPY BELIEF PROPAGATION

We now express the POF optimization as an inference problem

on a factor graph, in preparation for using LBP to compute the
MAP values of the variable parameters, corresponding to the

values that minimize the POF objective (Pearl, 1988; Yedidia
et al., 2003).

4.1 Factor graph

A factor graph is a bipartite graph with factor nodes "e,i,j (for
each experiment e, ODE i and timepoint tj) and variable param-
eter nodes ki (for the members of ~k). We connect a factor node

"e,i,j to a parameter node ki if and only if ki appears in the equa-
tion for "e,i,j.
For each factor node, a factor graph has a joint table (or joint

probability distribution) to describe the probability of each com-
bination of values for the adjacent variable nodes. We compute a

constant look-up table Te,i,j, based on the error term "e,i,j, for the
joint probability of each combination of the adjacent variable

parameters. (Section 4.2 describes how errors are converted into
probabilities.) Note that "e,i,j represents the discrepancy between

the right-hand side of the i-th ODE (computed using the variable
parameters) and the left-hand side of the ODE (computed from

spline-based interpolation of the data for experiment e, species i
and timepoint tj). Each factor node thus serves to enforce the

equality of one ODE at one timeslice and one experiment. An
example factor graph corresponding to the two-species A! B

system is shown in Figure 1, with variable nodes (rate param-
eters) represented by circles, and factor nodes ("e,i,j) by

rectangles.

4.2 Discretization and joint probability tables

Each variable node ki is associated with a one-dimensional dis-

crete probability distribution, which represents the current belief
about the likeliness of that value being in the optimal parameter

vector. In theory, variable parameters are real numbers, but to
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permit us to evaluate combinations ‘systematically’, we discretize

the domain of each parameter into a finite number of

sub-intervals, or bins, and we represent each bin by its midpoint.

Coarser intervals (larger bins) will yield faster runtime at the

expense of accuracy. At the start of the algorithm, the one-di-

mensional discrete probability distribution for each variable par-

ameter is uniform, representing lack of prior knowledge about

the value of that parameter. During the process of belief propa-

gation (Section 4.3), the discrete probability distributions will be

updated by a message passing algorithm, until convergence or

until an iteration limit.
If factor node "e,i,j has degree d, then the joint table Te,i,j is a

d-dimensional table, and each dimension is discretized with the

same binning as the variable parameters of the d adjacent vari-

able nodes (Fig. 2). To convert the error terms "e,i,j into prob-

abilities, we use a Boltzmann-like exponential weighting:

pðfÞ ¼ C� expð�"e, i, jÞ. This empirical choice makes large viola-

tions exponentially unlikely, and C is a normalization constant to

make p(f) a valid probability distribution, i.e. all entries in the

discrete joint table sum up to 1. (Alternative methods of repre-

senting a systematic solution of "e,i,j would also have been

possible.)
Note that minimizing the error means maximizing the prob-

ability. These probability distributions do not change during the

course of belief propagation and can be pre-computed. The error

term "e,i,j must be computed for every possible discrete combin-

ation of the relevant parameters, using the midpoint of each

parameter bin, and the errors can then be converted to probabil-

ities to fill in the joint probability table Te,i,j. The optimal com-

bination of parameters for each "e,i,j sub-problem can be found

trivially by scanning the Te,i,j table.

Owing to the discretization required by this method, the esti-

mated value of each parameter is a range rather than a single

value. Although discretization sacrifices some accuracy (analo-

gous to round-off error), we choose the variable parameters to be

discretized, sometimes quite coarsely, because the output of such

a method might be ideal input for a local search method, such as

Levenberg–Marquardt or Steepest Descent, to refine afterwards,

using a more precise simulation-based objective function.

4.3 Loopy belief propagation

Belief propagation can be described informally as two types

of message passing: variable nodes K pass messages (one-

dimensional probability distributions, �K!f) to adjacent factor

nodes f to communicate what the variable node believes to be

the value of its variable. Factor nodes f in turn pass a message

(one-dimensional probability distribution, �f!K) to adjacent

variable nodes K communicating what they believe the variable

values to be. Each message from a factor causes the variable

nodes to update their probability distributions, and that update

also alters the later messages sent out by the variable nodes. In

acyclic graphs, the message passing algorithm yields a provably

exact, optimal MAP solution for the variables, efficiently.

Murphy et al. (1999) describe the LBP algorithm, extending

the message passing framework to achieve good heuristic ap-

proximations for cyclic graphs. We use a variant of the LBP

message-passing algorithm detailed in Koh et al. (2007), sum-

marized in Box1 as ‘SPEDRE-base’.
In a discrete joint distribution g with dimensions K1,K2,..,Km,

we define the maximization over a dimension Ki as follows:

max
�Ki

g ðk1, k2, ::: , kmÞ
	 

¼ max

k12K1

�� max
ki�12Ki�1

max
kiþ12Kiþ1

�� max
km2Km

g ðk1, k2, ::: , kmÞ

� �� �� �� �
ð8Þ

where �Ki denotes the set of all dimensions in g except Ki.
Convergence in step B occurs when no normalized message in

the current iteration differs by more than a tolerance value from

the corresponding message in the previous iteration. As the LBP

algorithm is not guaranteed to converge, and in some cases might

oscillate (Murphy et al., 1999), we impose an additional criterion

to limit the total number of iterations.
From Box 1, the asymptotic runtime of the modified LBP

algorithm, including pre-computation of all the look-up joint

tables, can be expressed as:

O

h
#iterations� #experiments� #species� #timepoints

� #rates� #binsþ degree� #binsdegree
� �i

See Supplementary Text S3 for a derivation of the asymptotic

runtime. The time complexity scales exponentially with the factor

graph degree, which is defined as the maximum number of vari-

able nodes adjacent to any factor node, or the maximum number

of unknown rate parameters appearing in any ODE. For a factor

graph with bounded degree, the method scales polynomially with

respect to the number of species, timepoints and discrete bins.

This means the method scales well on biological pathways with a

Fig. 2. Illustration of a joint probability table of three dimensions, cor-

responding to rate constants k1, k2 and k3. Each dimension of the look-up

table corresponds to one associated variable parameter (variable node in

the factor graph), binned into three possible values. The joint probability

computed for each cell of the table (e.g. p fð Þ
��
k1¼2, k2¼3, k3¼1

c for the cell

with k1¼ 2nd bin, k2¼ 3rd bin, k3¼ 1st bin) is obtained by converting the

"e,i,j error term into a probability, via exponential weighting and

normalization

Fig. 1. A partial factor graph of the example two-species system, shown

for one timepoint tj and one experiment e. The complete factor graph

would include factor nodes for every timepoint and every experimental

treatment, each connected to the k1 and k2 variable nodes
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small bounded number of reactions per species. Our asymptotic

runtime compares favourably with conventional (‘primal’) meth-

ods, because primal methods search for full-length parameter

vectors in a space that grows exponentially with the number of

parameters. Although primal methods with heuristic sampling

do not have to cover the entire parameter space, they must main-

tain some coverage of the major ‘valleys’ of the objective func-

tion. If the number of valleys and inflection points grows with

the size of the parameter space, then primal methods will per-

form poorly (accuracy versus runtime) on large networks.

5 RESULTS

Before testing the overall performance of the method on full

problems, we first performed simplistic tests with partial prob-

lems, to isolate specific variables of interest such as #species and

#timepoints. We monitored performance as a function of net-

work size and timepoint spacing, to probe two sources of poten-

tial error in the SPEDRE-base method: spline accuracy and the

POF objective function. The simplistic tests used ring-shaped

networks (Fig. 3A), with nominal parameters randomly chosen

to be at exact mid-points of the parameter discretization bins.

Simulated data were generated with random initial concentra-

tions, using the nominal rate parameters. For each run of

SPEDRE-base, we monitored the objective

Normalized logðPOFÞ ¼
logðPOFÞ

Nt � ðNs � 2Þ
, ð9Þ

normalized with respect to the number of factors in the product

of Equation (9). The objective declined when the number of

timepoints increased (Fig. 3B), indicating as expected that

SPEDRE gives better estimates of the parameters when time-

points are densely sampled.
Next we compared the normalized log(POF) value between the

results of SPEDRE-base, and the nominal (‘correct’) rate con-

stants, using 10 time steps (i.e. 11 timepoints) for each test.

Figure 3C shows that the POF scores of the exact nominal par-

ameters were higher than the POF scores of the parameters

found by SPEDRE-base, for all networks of significant size.

Because SPEDRE-base found parameters with better scores

than the ‘correct’ parameters, we infer that the POF objective

is an imperfect score of parameter accuracy.

5.1 Scalability with artificial networks

The complete SPEDRE method consists of SPEDRE-base

(Sections 3–4) followed by LM to refine the discretized results

from SPEDRE-base. The major task of SPEDRE-base is to find

good starting values for local optimization, and post-fitting is a

necessary part of the procedure. We compared the performance

of the complete SPEDRE method against a selection of popular

local, global and hybrid methods, on parameter estimation prob-

lems from low-degree networks. All tests were full problems with

parameters set randomly, without regard to bins or bin mid-

points. Random networks of increasing size (from 30 to 150

species) were constructed with low degree (two-thirds of the re-

actions involving three species, and one-third involving two spe-

cies), to generate parameter estimation problems with increasing

scale. We tested 14 parameter estimation methods including

SPEDRE-base, LM (local), SD (local), SRES (global), PSO

(global) and GA (global), plus hybrid global–local combinations

of these methods (e.g. SRES_LM denotes the global method

SRES plus the local method LM). Runtime and multiple error

scores were measured as a large-scale screen (see Supplementary

Text S5, Supplementary Figs S6 and S8 and Supplementary

Tables S7 and S9). The best-performing methods (asterisks in

Supplementary Fig. S6) are consistently SPEDRE and a subset

of hybrid stochastic-local methods. Highly similar scores can

occur when multiple methods converge to the same local opti-

mum. Accuracy tests showed the following trends: (i) for small

networks, local methods performed well; (ii) hybrid methods

(including SPEDRE) showed superior accuracy to standalone

Box. 1. SPEDRE-base algorithm for computing the MAP estimates on a

factor graph. N(node) is the set of neighbours adjacent to node. Steps

B.1.1.2 and B.2.1 include a logarithm operation as a heuristic to avoid

rounding off small numbers to zero. Because normalizing the messages or

probability distributions does not affect the final MAP results (Yedidia

et al., 2003), we also perform normalization after the computation of step

B.1.1.2 and B.2.1 so that the messages and beliefs are always valid prob-

ability distributions at every iteration. The messages history serves as a

buffer for incoming messages, and the algorithm makes implicit use of the

message history during steps B.1.1.2 and B.2.1.

A. Initialization:

A.1. Compute look-up joint tables, p fð Þ, for each factor node

A.2. Set all variable nodes to uniform distribution

B. Propagation: repeat until convergence

B.1. For each factor node f

B.1.1. For each variable node K 2 NðfÞ

B.1.1.1. Collect �Ki!f: the message from variable node Ki 2 NðfÞn

fKg to f, which is pðKiÞ, the current probability distribution of Ki

B.1.1.2. Compute �f!K ¼ max
�K

pðfÞ �
P
i

log �Ki!f

� �� �
B.1.1.3. Send �f!K to the message history of K

B.2. For each variable node K

B.2.1. Update the distribution of K to pðKÞ �
P
i

log �fi!K

� �
, where

�Ki!f are stored in the message history of K

C. Output: compute the MAP probability of each variable node

MAPðKÞ ¼ argmaxfpðKÞg

A B C

Fig. 3. (A) Ring network diagram; (B) normalized log(POF) with respect

to the number of timepoints on different network sizes; (C) normalized

log(POF) of LBP-predicted rate constants, versus the normalized

log(POF) of nominal (‘correct’) rate constants on circular networks of

10 to 100 species with 11 timepoints. (Total simulation duration was 4 s,

with 0.4 s for each time step). Each rate constant was discretized into 10

equidistant bins from 0.05 to 1.05, with the nominal rate constants se-

lected from among the bin midpoints. Dataset appears in Supplementary

Source Files
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local or global methods; (iii) SPEDRE accuracy was comparable

with the accuracy of other hybrid methods; (iv) the quality scores

of SPEDRE-base were significantly worse than SPEDRE, con-

firming that the LM post-processor is indeed important for refin-

ing discretized results. Supplementary Text S5 also clarifies the

trade-off between accuracy and speed. We conclude that

SPEDRE was ‘tied’ with other state-of-the-art methods, for the

spectrum of low-degree data-rich problems we constructed.

5.2 Performance on a novel model of Akt pathway

activation

To test SPEDRE on a realistic biological pathway, we built a

novel model of Akt activation (‘Akt model’), using our experi-

mental data from recent studies (Lim and Clément, 2007). Akt is

a kinase, frequently over-activated in cancers, that signals for

survival and proliferation. The signalling events in our model

of Akt activation are illustrated in Figure 4 and described

below. Akt is activated after stimulation by serum (growth fac-

tors), not only via the canonical activation of PI3Kinase (PI3K)

by serum, but also via reactive oxygen species (ROS) and

ROS-induced inactivation of the phosphatase PTEN. ROS are

produced by NADPH oxidase (NOX), and degraded by

anti-oxidants. The phosphorylation and activation of Akt is a

multi-step process, involving the translocation of Akt from the

cytosol to the cell membrane and its phosphorylation by the

kinase PDK1 at Thr308. The translocation of Akt and PDK1

to the membrane is controlled by the level of phosphatidylinosi-

tol 3,4,5-trisphosphate (PIP3), which is determined by the bal-

ance between PIP3 production (by serum-activated PI3Kinase)

and PIP3 degradation (by the phosphatase PTEN).

Phosphorylated Akt returns to the cytosol and is subject to

dephosphorylation by PP2A.

The model was built manually based on dynamic measure-

ments of the Akt pathway, observed in serum-starved mouse

embryonic fibroblasts stimulated by the addition of 10%

serum to the culture medium (Lim and Clément, 2007). Supple-

mentary Table S11 defines the full model.
Using simulation, we generated complete datasets with artifi-

cial noise at levels of 0, 1 and 20%. Parameter estimation per-

formance was compared between SPEDRE and some popular

methods (Fig. 5, with complete results in Supplementary Table

S12).

According to Figure 5A–C, the prediction quality of SPEDRE

(leftmost bar, shaded black) is better than the other methods for

noise-free and 1%-noise datasets. With noise levels of 20%, all

methods perform unacceptably, providing worse than 100% spe-

cies MRE, as shown in Figure 5A. Similarly, on the 20%-noise

data set, all methods have unacceptably high median PPE and

weighted SSE, as shown in Figure 5B–C. In this parameter op-

timization test with Akt dynamics, SPEDRE out-performed

other methods, indicating that the parameter neighbourhoods

it gave to LM were better than the neighbourhoods from other

global methods, even though SPEDRE-base had equivalent per-

formance in non-biological tests.
Figure 5D also displays a counterintuitive phenomenon, in

which the local search method LM takes longer to run than

any hybrid method including LM as a post-processor. LM per-

forms many iterations if it starts with a random guess, but it

converges quickly if it starts with the output of a global search

method. Adding more phases of search would be expected to

increase rather than decrease the total runtime, but in this case,

a phase of global search led to faster LM convergence, which

more than compensated for the time of running the global

search.

6 DISCUSSION

The key innovations of SPEDRE are the use of a probabilistic

graphical model to decompose the dual objective function, and

pre-computation of discrete solutions to each sub-problem. The

method has a well-defined asymptotic runtime and good scalabil-

ity, in exchange for approximate heuristic optimization.
The SPEDRE approach aims for asymptotic scalability at the

expense of accuracy. This philosophy appears in (i) the use of

splines to approximate the species derivative, (ii) the use of bin-

ning to discretize the parameter space and (iii) the use of LBP for

probabilistic inference. Each of these elements can introduce

error. We believed the dangers of compounded errors would

make the SPEDRE method less robust to noisy data than simu-

lation-based methods. The expected sensitivity of SPEDRE to

input noise has not yet been confirmed in the tests shown (and in

other tests, such as Supplementary Table S12); rather we found

that all methods gave unacceptably poor answers with noisy

A B

C D

Fig. 5. Comparison of parameter estimation algorithms applied to the

Akt network, with noise levels 0, 1 and 20%, evaluated by (A) species

MRE, (B) median PPE, (C) weighted SSE and (D) runtime

Fig. 4. Network diagram of the Akt model, including redox regulation of

PTEN. The prefix ‘inact’ denotes inactive species; the suffix ‘cyto’ (or

‘mem’) indicates cytosolic (or plasma membrane) localization. The

suffix ‘p308’ indicates phosphorylation at residue Thr308
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data. Future work must continue to characterize the numerical
stability, approximation error and noise tolerance of SPEDRE
and other parameter estimation methods. SPEDRE is in fact a

general algorithm for ODE parameter fitting, applicable to any
case in which the right-hand sides of the ODEs have few terms
(low degree), and where the data-fitting problem provides dense

observations of all variables.
The accuracy and speed of SPEDRE were compared against

several methods of parameter estimation, in low-degree,

data-rich test cases. SPEDRE performance was competitive in
all tests, and SPEDRE was the best-performing method for the
Akt network test. We conclude that SPEDRE performs well

when tested in the specific niche of problems for which it was
designed. Naturally the SPEDRE performance would degrade
(perhaps exponentially) outside of its intended niche. SPEDRE

exhibits an abrupt trade-off between problem type and perform-
ance, but performance trade-offs are not new to parameter esti-
mation research. Major pathway simulation software packages

already maintain collections of multiple parameter estimation
methods, rather than expecting a single best method to cover
all problems.

A current hurdle for broader applicability of SPEDRE is the
inability to handle high-degree nodes. Many small networks are
low-degree, but large networks often have at least one hub. In

order for new spline-based collocation methods to be truly su-
perior to conventional (‘primal’ objective) parameter estimation
methods, they would have to handle high-degree networks and

extensive gaps in experimental observations, robustly. Future
innovations may be able to develop a new composition of par-
ameter estimation methods, so that low-degree sub-problems can

be solved by SPEDRE and high-degree hubs can be treated
separately.
A side-effect of our work is to provide performance compari-

sons for several hybrid and standalone parameter estimation
methods. Our tests reproduced the earlier observation that
hybrid methods generally perform better than standalone

global methods (Ashyraliyev et al., 2009; Rodriguez-Fernandez
et al., 2006). One surprising phenomenon we observed was that
performing a global search prior to a local search sometimes

caused the total runtime to be faster than using the local
search alone (Fig. 5D). Future work may be able to exploit
this non-additive runtime effect, perhaps through deeper integra-

tion of global and local search methods, rather than applying
independent methods sequentially.
A distinguishing feature of SPEDRE is that it requires large

amounts of concentration measurement data, which would have
been prohibitive a decade ago. Traditional experimental methods
required an investment of labour and resources that was roughly

linear in the number of proteins studied. New proteomic meth-
ods can measure additional proteins at virtually no additional
cost, and proteomic datasets are starting to provide data-rich

environments with measurements of all proteins in a system.
SILAC technology has recently been used for time-series meas-
urements of 147 proteins (Tasaki et al., 2010) in NIH3T3-derived

cells, and again for time-series of 534 proteins in the cytosol and
626 proteins in the nucleus in glucocorticoid-exposed myogenic
cells (Reeves et al., 2009). Most proteomic studies have not been

performed with time-series repeats for studying dynamics, but
large-scale dynamic data will become increasingly available

with the explosive growth in the number of proteomic experi-

ments (Zhang et al., 2011). New studies of large networks will

give rise to huge parameter estimation problems, with rich data-

sets, but with too many unknown parameters for conventional

methods to solve.

We believe that proteomic technology both enables and re-

quires novel approaches to parameter estimation such as

SPEDRE. As models grow in size owing to technological ad-

vances, decomposition-based methods will probably dominate

non–decomposition-based search methods, which suffer from

the curse of dimensionality. The trade-offs exhibited by our

method may be increasingly desirable for future trends in par-

ameter estimation.
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Vieweg, Wiesbaden, Germany.
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