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A B S T R A C T

Background: The compound LY303511 (LY30) has been proven to induce production of ROS and to

sensitize cancer cells to TRAIL-induced apoptosis, but the mechanisms and mediators of LY30-induced

effects are potentially complex. Bayesian networks are a modelling technique for making probabilistic

inferences about complex networks of uncertain causality.

Methods: Fluorescent indicators for ROS, reactive nitrogen species (RNS), and free calcium were

measured in time-series after LY30 treatment. This ‘‘correlative’’ dataset was used as input for Bayesian

modelling to predict the causal dependencies among the measured species. Predictions were compared

against a separate ‘‘causal’’ dataset, in which cells had been treated with FeTPPS to scavenge

peroxynitrite, EGTA-am to chelate calcium, and Tiron to scavenge O2
��. Finally, cell viability

measurements were integrated into an extended model of LY30 effects.

Results: LY30 treatment caused a rapid increase of ROS (measured by DCFDA) as well as a significant

increase in RNS and calcium. Bayesian modelling predicted that Ca2+was a partial cause of the ROS

induced by short incubations with LY30, and that RNS was strongly responsible for the ROS induced by

long incubations with LY30. Validation experiments confirmed the predicted roles of RNS and calcium,

and also demonstrated a causal role for O2
��. In cell viability experiments, the additive effects of calcium

and peroxynitrite were responsible for 90% of LY30-mediated sensitization to TRAIL-induced apoptosis.

Conclusions: We conclude that LY30 induces interdependent pathways of reactive species and stress

signalling, with peroxynitrite and calcium contributing most significantly to apoptosis sensitization.

� 2012 Elsevier Inc. All rights reserved.
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1. Introduction

The drug LY303511 (LY30), an inactive analogue of the PI3K
inhibitor LY294002 [1,2], has been found to sensitize multiple
cancer cell lines to TRAIL- and vincristine-induced apoptosis [3–5].
Sensitization to apoptosis is an important therapeutic objective
because many cancers develop resistance to single anti-cancer
therapies such as TRAIL [6]. In the cell lines tested, LY30 was
observed to induce a significant increase in reactive oxygen species
(ROS) production, measured as DCFDA fluorescence. ROS produc-
tion is important to many pathways of apoptosis sensitization [7],
and to the mechanisms of many chemotherapeutic compounds
[8,9]. High levels of ROS may promote apoptosis, particularly in
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cancer cells that have high metabolic rates and high levels of
oxidative stress [10]. Previous work did not establish the origin(s)
or the precise nature of the ROS implicated in the death sensitizing
activity of LY30.

The ROS category includes oxygen radicals such as superoxide
(O2

��) and hydroxyl radical (OH�), and nonradical compounds that
are easily converted into radicals, such as peroxynitrite (ONOO�),
HOCl, and H2O2. Under physiological conditions, ROS are a natural
by-product of the electron transport chain (ETC) [11], but other
intracellular mechanisms can produce ROS under normal condi-
tions, such as NADPH oxidase; or under stress, such as the
endoplasmic reticulum (ER). In many cases, the ratio of O2

�� to
H2O2 determines whether ROS will promote or hinder apoptosis
[12], but many species can affect cell fate. ROS levels and apoptosis
signalling can be regulated by reactive nitrogen species (RNS) and
by Ca2+ levels [13]. For example, ONOO� is a member of both the
ROS and RNS categories, and it is formed by the rapid reaction of
NO with O2

��. ONOO� is known to induce apoptosis at low levels
and trigger necrosis at high levels [14]. In addition, ROS can

http://dx.doi.org/10.1016/j.bcp.2012.08.028
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increase Ca2+ levels [13], which in turn can stimulate a further
increase in ROS production, through RNS-dependent [15,16] and
RNS-independent pathways [17]. In sum, the pathways are
interconnected.

The causal roles of ROS, RNS, and/or Ca2+, towards each other
and towards apoptosis sensitization, are potentially complex.
Bayesian probability is a mathematical framework for computing
conditional probabilities, such as the probability of an effect given
a cause, or more interestingly, the probability of a possible cause
given an observed effect. Bayesian networks can use incomplete
information for efficient ‘‘learning’’ of causal dependencies
between multiple variables in a system [18]. Whether using
Bayesian networks or any other formalism, modelling research
often constructs models based on a specific training dataset, while
the predictive accuracy of the model is evaluated using a separate
test dataset, that has not been used during model-building. Models
with incorrect mechanisms can be ‘‘overfit’’ to match their training
data, but such models can rarely predict the results in the test
dataset. A model that can match both training dataset and test
dataset is more to likely to simulate a correct mechanism.

In this work, we studied the roles of O2
��, RNS, and Ca2+, as

candidate mediators for the effects of LY30 on ROS production, and
on TRAIL-induced apoptosis in HeLa cells. Bayesian network
modelling was performed using a training dataset of time-series
observations in LY30-treated cells, and validated using a test
dataset of time-series observations with scavengers of O2

��, RNS,
or Ca2+. As a second test, the Bayesian network was trained on a
dataset of cell viability, and tested on a dataset of combination
inhibitor treatments.

2. Materials and methods

2.1. Cells and anti-cancer treatments

HeLa human cervical cancer cell line was purchased from
American Type Culture Collection (ATCC, Rockville, MD, USA) and
maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)
supplemented with 10% FBS, 1% L-glutamine, and 1% S-penicillin.
HeLa cells were plated at 0.125 million cells/well in 24-well plates
(and proportionally for other size plates) and grown overnight
until 80% confluent.

All treatments with LY30 (Alexis, Switzerland) and TRAIL
(Biomol, Plymouth Meeting, PA, USA) used the methods, dosing,
and schedules as previously reported [4]. In particular, combina-
tion treatments of LY30 and TRAIL involved pre-incubation of cells
with 25 mM LY30 for 1 h before addition of 20 ng/ml TRAIL.

2.2. Flow cytometry measurements

After specific treatments, cells were washed with 1� PBS, and
loaded with fluorescent dyes according to manufacturers’ recom-
mendations. In particular, cells were incubated for 20 min with
fresh CM-H2DCFDA (DCFDA) at 5 mM, DAF-FM (DAF) at 5 mM,
MitoSOX-red (MitoSOX) at 10 mM, or dihydroethidium (DHE) at
5 mM. Then, cells were washed again with 1� PBS and analysed
under flow cytometry. DCFDA and DAF were analysed with
excitation wavelength at 488 nm and emission wavelength at
517 nm. Cells with DHE and MitoSOX staining were analysed with
excitation wavelength at 400 nm and emission wavelength at
590 nm. For each treatment, at least 10,000 events were obtained.
Data were then gated according to side scatter (SS) and forward
scatter (FS), to exclude cellular debris. Once set, gates were applied
to all samples in the experiment. For quantification, we firstly
obtained the average fluorescence intensity of each sample (e.g.
Fi_measured for sample i), and then normalized it according to
the formula Ri ¼ Fi measured � Funstainedð Þ= FCTL measured � Funstainedð Þ
where Ri is the normalized level of sample i; Funstained is the
absolute fluorescence from unstained control, and FCTL_measured is
the absolute fluorescence from untreated control sample.

2.3. Scavengers, inhibitors, and chelators.

O2
�� scavenger Tiron (Sigma–Aldrich) was applied at 10 mM to

cells 1 h before adding LY30. Ca2+ chelator EGTA-am (Life
Technologies) was administered at 25 mM to cells 15 min before
adding LY30. Peroxynitrite scavenger FeTPPS (Calbiochem, San
Diego, CA, USA) was administered to cell samples at concentrations
of 50 mM or 100 mM, 1 h before LY30 treatment. SOD-1(Cu/ZnSOD)
inhibitor DDC (Sigma–Aldrich) was applied to cells at concentra-
tions of 200 mM or 400 mM, with 2 h pre-incubation before LY30.
Thapsigargin (Life Technologies) was applied at 1 mM. O2

��

inhibitor Tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid diso-
dium salt, Sigma–Aldrich) was added at 10 mM with 1 h pre-
incubation before LY30. Experiments with the H2O2 scavenger
catalase (C3511 catalase from bovine liver, Sigma–Aldrich) were
administered into wells at doses of 2000 units/ml one day before
the treatment with LY30. On the second day, cells were changed
with fresh media and catalase was added again at the same
concentration (2000 units/ml; 4000 units/ml) together with LY30
(25 mM).

2.4. O2
�� measurement using Lucigenin

HeLa cells were seeded in 100 mm tissue culture plates 24 h
before performing the experiment. Cells were washed once with lx
PBS, and then detached with 1� trypsin (Trypsin, Hyclone, Logan,
UT). Then cells were transferred to a sample cuvette and
centrifuged at 1200 rpm at 25 8C for 5 min. The supernatant was
removed, and the cell pellet was re-suspended in 400 ml of lx ATP
releasing buffer (Sigma Chemical Co., St. Louis, MO) at room
temperature. Finally, 100 ml of lucigenin stock solution was added
into cell lysate immediately before the reading. Lucigenin is a di-
acridinium compound, which emits light on reaction with O2

��

[19]. In our experiments, chemoluminescence was obtained after
adding lucigenin to fresh cell lysate.

2.5. Ca2+measurements using Fura-2 am

Cells were incubated with Fura-2 am in Ca2+ measurement
buffer at a concentration of 5 mM for 30 min at room temperature,
and then they were changed into indicator-free buffer (HBSS
containing 1 mM Ca2+) for 30 min for de-esterification of
intracellular AM esters. After that, measurements were quantified
with RF-5301PC Intracellular ion measurement system (Shimadzu
corporation, Japan). When the baseline Fl¼340=Fl¼380 fluorescence
intensity ratio between bound Ca2+ and free Ca2+ stabilized, drugs
(LY30 or Thapsigargin) were added according to specified
concentrations and schedules. Finally, cells were treated with
0.05% Triton X-100 for calculation of Rmax and treated with
100 mM EGTA (5 mM final) for calculation of Rmin. Intracellular
free Ca2+ concentrations were calibrated through the formula

Ca2þ ¼ KdQ
R � Rmin

Rmax � R

where R refers to the measured fluorescence ratio between 340 and
380 Fl¼340=Fl¼380, Rmax is the maximum fluorescence ratio
(calculated through Triton X-100 treatment), Rmin is the minimum
fluorescence ratio (calculated through EGTA treatment), Kd is the
Ca2+ dissociation constant of the Fura-2 (which can be calculated
with a known concentration Ca2+), and Q is the calculated ratio of
Fmin to Fmax at l2 (�380 nm).
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2.6. Ca2+measurement using spinning disk confocal microscopy

(SDCM)

Cells were seeded in 8-well chambers with 25,000 cells per
well, and allowed to grow for 24 h. The following day, cells were
washed with warm Ca2+ measurement buffer and stained with
25 mM Fluo-4-am and 250 mM probenecid at in the Ca2+ buffer for
1 h at room temperature. Then, the cells were washed twice before
measurement via spinning disk confocal microscopy with laser
excitation at 488 nm, fluorescence emission at 520 nm. For Ca2+

measurements after Thapsigargin treatment, images were taken
every 2 s for 6 min. For Ca2+ measurements after LY30 or DMSO
treatment, images were taken every 15 s for 45 min. SDCM data
was analysed using software developed by the Fivaz group [20].

2.7. Cell viability assays

To measure cell viability, cells were plated in 24 well plates
(1 � 105 cells/well) overnight to reach 80% confluency on the next
day, prior to treatment. For LY30 and TRAIL combination
treatment, cells were pre-incubated with 25 mM LY30 for 1 h
and then treated with 20 ng/ml of TRAIL for 24 h. For single
treatments, cells were treated either with LY30 (25 mM) for 25 h,
or with TRAIL (20 ng/ml) for 24 h, to replicate the individual parts
of the combined treatment. For experiments with scavengers or
inhibitors, the additional compound was added into sample wells
at the concentrations specified in Section 2.3. Finally, cells were
washed with 1� PBS and stained with crystal violet for 20 min. The
excess crystal violet solution was washed away using distilled
water. For quantification, crystal violet was dissolved in 1% SDS
and shaken for 1 h before measuring absorbance at 595 nm with a
Tecan microplate reader.

2.8. Bayesian modelling

The connectivity of a Bayesian network is represented by a
directed graph, which consists of variables nodes, denoted by ovals
(for the species concentrations) and directed edges, denoted by
arrows (for the causal effects). A directed edge points from a parent
node (causal variable) to a child node (effect variable). A Bayesian
network model establishes a conditional probability table for each
node, to quantify how it is affected by its parent nodes. A
conditional probability table (CPTs) specifies a discrete probability
distribution for the child variable, for each possible combination of
values for its parent variables. Automated learning of Bayesian
network models (to establish the edges and the CPTs) was an
iterative search process in which random elements of the directed
graph were modified (see Section 2.8.3), the probability tables
were updated (see Section 2.8.4), while each candidate model was
evaluated against the input data using a Bayesian score (see
Supplementary Text). A Bayesian score measures the agreement
between a model and a given input dataset, by using Bayesian
inference to simulate the behaviour of the model. Our input dataset
was obtained from our experiments using the normalization and
discretization methods described below. The structure learning,
parameter estimation, model inference, and Bayesian scoring
algorithms were performed using the Bayesian network toolbox
(BNT) [21,22] running on MATLAB (Mathworks, Natick, MA, USA).

2.8.1. Normalization

The levels of each measured species ([Ca2+]c using Fluo-4 am,
RNS using DAF, O2

�� using DHE and lucigenin, and ROS/H2O2 using
DCFDA) were normalized according to the formula Ci

normalized ¼
ð f i

m � f un ctl
m Þ=ð f ctl

m � f un ctl
m Þ where f i

m represents measured fluo-
rescence intensity of sample i, f un ctl

m represents measured
fluorescence intensity in unstained and untreated control, f ctl

m

represents measured fluorescence intensity in untreated control,
and Ci

normalized represents calculated normalized concentration. The
normalized datasets are shown in Supplementary Fig. S3.

2.8.2. Discretization

Normalized measurements (for DCFDA, DAF, DHE and Fluo-4)
were discretized into three levels to represent low, medium or high
concentrations (called 1–3). The minimum and maximum values
of each species were first determined and then the whole range of
values was divided into 3 intervals of equal width. Numerical
measurements were converted to categorical data using this
process of equal width interval binning. Exogenous LY30 stimulus
was also binned into 3 categories, corresponding to no incubation
(0 min), brief incubation (5 or 15 min) and long incubation (30 min
or longer). Supplementary Fig. S4 shows the datasets obtained by
discretizing our experimental data.

2.8.3. Structure learning

Structure learning was performed to select the model with
highest Bayesian score. We selected a Markov Chain Monte Carlo
(MCMC) algorithm called Metropolis–Hastings (MH) to search the
space of possible model structures [21]. We used the recom-
mended parameter settings of BNT (i.e., 25 steps to take before
drawing samples, and 500 samples to draw from the chain after
burn-in) [21,22]. To avoid residual effects from the starting state,
the process was repeated 10,000 times with random starting
points. After 10,000 repeats of the structure learning search, we
selected the 12 models with the highest Bayesian scores.

2.8.4. Parameter estimation

CPTs were estimated for each variable node in each network
structure based on the input dataset. The parameter estimation
process adjusted the probabilities in the CPTs to minimize the
difference between the simulated model and the observed input
data. All parameter estimation tasks employed the BNT method
learn_params_em which uses expectation-maximization.

Further modelling methods appear in the Supplementary Text,
with subsections for Model simulation via inference, Model
averaging, Model extension with inhibitors, and Model extension
with viability.

2.9. Statistical analysis

All experiments were performed at least three times. Numerical
data have been expressed as mean � SD. Statistical analysis was
performed using the one-tailed paired Student’s t-test considering
the variances unequal. P values < 0.05 were considered significant.

3. Results

3.1. Time-series measurements of O2
��, nitric oxide, and Ca2+, as

candidate mediators of LY30-induced ROS

Speculating that LY30 might disrupt the electron transport
chain, similar to compounds such as rotenone, we tested for an
increase in mitochondrial O2

��, which could be the source of LY30-
induced ROS. Mitochondrial O2

�� and intracellular H2O2 were
measured using the fluorescent dyes MitoSOXTM Red (MitoSOX) for
mitochondrial O2

��, and CM-H2DCFDA (DCFDA) for H2O2. To
minimize laser-induced ROS, samples were illuminated only once
and multiple samples were used for measuring multiple time-
points. HeLa cells were treated with 25 mM of LY30 for incubation
periods from 5 min to 2 h, and fluorescence intensity (n = 3
replicates) was measured using flow cytometry. Fig. 1a shows a
rapid increase of DCFDA (solid line) to 1.25-fold after 5 min of LY30
treatment, and a further increase from 1.25-fold to 1.6-fold after



Fig. 1. Measured intensity of ROS, RNS and Ca2+ after LY30 treatment. For each panel, the x-axis specifies the time period of LY30 incubation in HeLa cells, and the y-axis

specifies the measured fluorescence intensity for a specific dye. The fluorescence levels are plotted in units of fold-change with respect to untreated sample. (a) Measured CM-

H2DCFDA (DCFDA) fluorescence intensity levels averaged from 4 replicates. (b) Measured intensity of diamino fluorescein DAF-FM (DAF) fluorescence, from 3 replicates.

Measured O2
�� levels using (c) dihydroethidium (DHE), or (d) lucigenin luminescence (Luc), averaged from at least 3 replicates. The changes in DHE and Luc were not

statistically significant. (e) Measured levels of Ca2+using radiometric dye Fura-2, for 3 replicates. (f) Measured Ca2+ levels using Fluo-4, averaged over a population of cells

(n > 100).
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30 min, compared with untreated control. MitoSOX dynamics
(Supplementary Fig. S1c, dashed line) showed a slight increase at
15 min but no significant increase after any tested duration of LY30
treatment, from 5 min to 2 h. Cytometry of cells double-stained
with DCFDA and MitoSOX also showed a sharp increase in DCFDA
by 5 min and minimal effect on MitoSOX (Supplementary Fig. S1c).
We conclude that mitochondrial O2

�� levels do not increase after
LY30 treatments of up to 2 h. Mathematical simulations in
Supplementary Fig. S1b shows that these experimental observa-
tions conflict with the hypothesis that LY30 causes elevated DCFDA
as a result of mitochondrial O2

�� from disruption of the
mitochondrial electron transport chain.

Other pathways, besides mitochondrial O2
��, that can lead to ROS

production include non-mitochondrial O2
�� production through

peroxisomes [23], NADPH oxidases 1–4 [24], or Ca2+-dependent
activation of NADPH oxidase 5 [24]; H2O2 production from the
endoplasmic reticulum [25]; and peroxynitrite (ONOO�) production
from the combination of Nitric Oxide (NO) and O2

�� [26].
To measure total cellular O2

�� (instead of mitochondrial O2
��),

we measured dihydroethidium (DHE) [27,28] and lucigenin.
Neither DHE nor lucigenin showed any significant increase for
LY30-treated samples of any incubation (Fig. 1b and c). The lack of
change in total O2
�� levels suggests that LY30 most likely has no

effect on O2
��, but we cannot exclude the possibility that LY30

might alter both the production and consumption of O2
��, causing

a change in the turnover rate without changing the steady state
concentration.

To test for involvement of reactive nitrogen species (RNS), we
used DAF-FM (DAF) [29]. Averaged DAF fluorescence, normalized
to untreated control (Fig. 1d), showed a 50% increase after 5 min of
LY30 incubation (p = 0.011). Longer incubations of LY30 caused
greater DAF intensity, reaching 1.7-fold at 30 min and 2-fold at
240 min. In sum, LY30 induced significant RNS production at all
time points.

To test whether LY30 perturbed intracellular Ca2+, we used the
ratiometric dye Fura-2 for free and bound Ca2+ [30] and the non-
ratiometric dye Fluo-4 am for cytosolic free calcium (Ca2+) [31]. In
the Fura-2 experiment, HeLa cells were incubated with LY30
(25 mM) for 100 s and fluorescence intensity was monitored, before
adding Thapsigargin (TG) as positive control [32]. A slight but
prolonged rise in Ca2+ levels was seen after LY30 treatment (Fig. 1e,
red arrows), prior to the expected spike induced by TG. In the Fluo-4
experiment, spinning disk confocal microscopy (SDCM) monitored
Fluo-4 in single cells (n > 100). Tracking and quantification software
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[20] extracted the Ca2+ dynamics (Fig. 1f), which showed a slight but
prolonged Ca2+ increase following LY30 treatment. Positive and
negative control treatments appear in Supplementary Fig. 2. We
conclude that LY30 elevated Ca2+ but we do not know if this increase
would be sufficient to trigger Ca2+-induced mechanisms of ROS
production, or Ca2+-induced mechanisms of apoptosis sensitization.

3.2. Training a Bayesian network model of the causal linkage from

LY30 to DCFDA

Bayesian probability is a mathematical framework for comput-
ing conditional probabilities, such as the probability of an effect
occurring, given that a cause has been observed, Prob (Effect j
Cause), or for reasoning ‘‘backwards’’ from effects to causes, such
as the probability of a possible cause given an observed effect, Prob
(Cause j Effect). Bayesian belief networks, or simply Bayesian
networks, are a modelling formalism to represent causal depen-
dencies between multiple variables in a system, provided that the
variables do not exhibit any cycles of causality (i.e., circular logic).
The merits and limitations of Bayesian network modelling are
summarized in the discussion.

The nodes of a Bayesian network are the variables in a system,
and the relationships between the variable nodes are directed edges

representing causal relationships. In addition, each variable node
has a conditional probability table that provides the mathematical
probabilities of its possible values, given the possible combinations
of its upstream (causal) variables. For further background on
Bayesian networks, see [33] or the textbook [34].

We utilized Bayesian networks to represent possible networks
of causality downstream of LY30 and upstream of DCFDA. The node
for LY30 was constrained to be the causal ‘‘root’’ of the tree,
upstream of all other variable nodes. The node for DCFDA was
constrained to be the downstream output of the system, upstream
of nothing. We selected three additional variables – O2

��, RNS and
Ca2+ – to be additional variable nodes in network, and we required
the values of these variable nodes to be discretized into 3 states
representing low, medium, and high levels of the species. The LY30
variable was divided into three possible values representing the
duration of treatment: untreated, brief, and long incubation times
(see Section 2). Not knowing the cause/effect relationships of
Fig. 2. The top 12 Bayesian network models describing the causal dependencies betwee

learning algorithm, and evaluated with the Bayesian score using BNT software (see S

discretized version of the data from Fig. 1 (see Supplementary Figs. S3 and S4).
superoxide, RNS and Ca2+towards each other or towards DCFDA,
we did not impose any constraints on the placement or relative
connectivity of the O2

��, RNS and Ca2+ nodes in the network
(including dead-ends with no impact on DCFDA). Instead, we used
a computational strategy to search among the 12,800 possible
combinations of directed edges for the whole network, using the
Bayesian network toolbox (BNT) [21,22] as described in Section 2.
The Bayesian score [35] was used for evaluating the agreement of
each network structure with the training dataset. The training
dataset (Supplementary Fig. S4) was a normalized discretization of
the data in Fig. 1 (see Section 2). To avoid over-fitting with a single
‘‘highest-score’’ model, we selected common features through
‘‘model averaging,’’ an approach used for studying phosphoryla-
tion in human T cell signalling [36]. The 12 network structures
with highest Bayesian scores were selected to be our candidate
models (Fig. 2), and we performed parameter estimation again, to
obtain refined probability values for the conditional probability
tables (CPTs).

For the 12 top-scoring candidate networks, we simulated the
probabilities for the RNS, Ca2+, O2

�� and DCFDA variables, under 3
conditions: no LY30 treatment, brief LY30 incubation, and long
LY30 incubation. The averages of these probabilities were taken as
our consensus, and plotted in Fig. 3. For example, Fig. 3 simulations
show 100% probability that RNS levels would be low after no LY30
treatment, 28% probability RNS would be low and 72% probability
that RNS would be medium with brief LY30 incubation, and over
90% probability that RNS would be high with long LY30 incubation.
Fig. 3 consensus probabilities for the levels of RNS, Ca2+, O2

�� and
DCFDA are consistent, at low resolution, with the experimental
observations in Fig. 1. This indicates that our modelling has
‘‘learned’’ [34] the information in the training dataset, but it does
not indicate whether the Bayesian modelling has predictive ability
beyond the training set it was given, nor whether the causal
linkages are correct.

Next we predicted the causal contribution (not the correlation)
of each intermediate variable (O2

��, RNS and Ca2+) towards DCFDA
fluorescence, by simulating the levels of DCFDA in the 12 top-
scoring models after virtual experiments inhibiting each variable
individually (blocking RNS, chelating Ca2+, scavenging O2

��, or
media). For the three possible LY30 treatment durations (no
n LY30, RNS, O2
��, free Ca2+ and DCFDA. Networks were generated by the structure

ection 2). The training dataset for the model building process was a normalized,



Fig. 4. The predicted intensities of DCFDA, expressed as conditional probabilities from the Bayesian networks. (a) An example of how to read tabulated probabilities is

demonstrated by comparing with a familiar pie chart. The conditional probabilities for each context will always sum to 100%. The probability that DCFDA signal intensity will

be (b) low, (c) medium and (d) high, was predicted by simulating the 12 top models (Fig. 2) and averaging the results. Each predicted probability (vertical axis) corresponded

to a combination of LY30 treatment duration (untreated, brief, and long) and inhibitor treatment (Control media, RNS inhibitor, Ca2+ inhibitor, or O2
�� inhibitor) along the

horizontal axes.

Fig. 3. Probabilities for RNS. Ca2+, O2
�� and DCFDA, averaged from the top 12 models, according to three durations of LY30 incubation. The probability that (a) the RNS level

(DAF intensity), (b) the Ca2+ level (Fluo-4 intensity), (c) the O2
�� signal (Fluo-4 intensity), or (d) the DCFDA intensity will be low, medium or high, according to the duration of

LY30 treatment. The information in the training dataset, originally observed as numerical signal intensities, is incorporated into the Bayesian network modelling as numerical

probabilities of discrete high, medium, and low signal intensities.

L. Tucker-Kellogg et al. / Biochemical Pharmacology 84 (2012) 1307–13171312
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treatment, brief incubation, and long incubation), we simulated
the probability of low, medium or high DCFDA levels, yielding a
total of (4 scavengers) � (3 incubation times) � (3 levels of
DCFDA) = 36 probabilities. Fig. 4a illustrates how the Bayesian
network probability distributions can be interpreted as piecharts.
Fig. 4b–d shows the averaged predictions for all 12 ((4
scavengers) � (3 incubation times)) probabilities.

The most significant prediction from these probability dis-
tributions is that RNS blockage would cause the ‘‘high DCFDA’’
state to decrease from 75% to 12% probable (dark blue versus light
blue bars in the ‘‘long incubation’’ row of Fig. 4d). In other words,
the modelling predicted that scavenging RNS would show a strong
inhibitory effect on the DCFDA signal, particularly for LY30
treatments >30 min. Note that in 10 of the 12 top-scoring models,
RNS was a direct, positive mediator from LY30 to DCFDA,
explaining the importance of RNS in the averaged predictions.

Another prediction from the simulations was that Ca2+

chelation would cause the ‘‘medium DCFDA’’ state to decrease
from 45% to 37% under brief LY30 treatments. Finally, O2

�� was
predicted to have no significant effect on DCFDA, but interestingly,
this prediction was not based on DCFDA being independent of
O2
��. Observe that 9 of the top 12 modes predicted antagonism

between RNS and O2
�� (with uncertainty about whether the

antagonism was from RNS to O2
�� or vice versa), and 4 of those 9

models predicted that the RNS–O2
�� antagonism would be

upstream of DCFDA. In sum, the modelling predicts O2
�� to have

an antagonistic relationship with NO, but little impact on DCFDA.

3.3. Testing Bayesian network predictions with scavenger/chelator

experiments.

Experimental tests to determine the causal contributions of
RNS, Ca2+ and O2

�� to LY30-induced DCFDA were conducted using
FeTPPS to scavenge ONOO�, EGTA-am to chelate Ca2+, and Tiron to
scavenge O2

�� (Supplementary Tables S5–S7). To facilitate
comparison between time-series measurements of fluorescent
dyes, and simulated probabilities of discrete high/medium/low
states, we constructed the following plot: the experimental
observations were converted into 3 categories of LY30 treatment
based on time of incubation (Fig. 5a); and the Bayesian probability
distributions in Fig. 4 were heuristically converted into predicted
concentrations (Fig. 5b), as explained in the figure caption. In
addition, error bars were constructed for the modelled concentra-
tions in Fig. 5b, based levels of disagreement among the top 12
models.

Experiments showed that the Ca2+ chelator EGTA-am was able
to block the early increase in DCFDA fluorescence induced by brief
LY30 incubations (from 1.5-fold to 1.2-fold with p = 0.03), but this
Fig. 5. Comparison between simulated DCFDA and measured DCFDA, for scavenger/chel

various scavenger/chelator compounds plus LY30. Tiron was used as O2
�� scavenger. (b

relative to untreated control. The predicted probability distributions of DCFDA at low, m

formula DCFDAaveraged ¼ 0:1 � DCFDA1
averaged þ 0:4 � DCFDA2

averaged þ 0:9 � DCFDA3
average

probability distributions of DCFDA at low, medium and high levels, respectively. DCFDAa

calculated DCFDA levels for untreated control. The error bars represent standard devia
effect was not observed with long incubations. This is in agreement
with the model prediction that a Ca2+-dependent pathway of ROS
production contributed to the initial rise in DCFDA after LY30
treatment.

The peroxynitrite scavenger FeTPPS (100 mM) decreased
DCFDA fluorescence slightly for short LY30 incubations
(p = 0.048), and very strongly for long LY30 incubations
(p = 0.03), suggesting that ONOO� is responsible for much of the
DCFDA fluorescence caused by LY30, particularly at later time-
points. The FeTPPS experiments agreed with the computational
prediction, except for the magnitude of the effect after brief LY30
incubations.

The O2
�� scavenger Tiron (10 mM) caused a slight decrease in

DCFDA fluorescence (from 1.45-fold to 1.38-fold p = 0.047) for
short incubations, and a significant decrease (from 1.89-fold to
1.53-fold with p = 0.02) for long incubations, suggesting that O2

��

plays a causal role in LY30-induced ROS production, especially at
late time points. The significant decrease of DCFDA after Tiron
treatment would seem to refute the prediction that O2

��would not
significantly affect DCFDA.

Overall, Fig. 5 and the comparison between modelling and
experiments showed that Bayesian modelling was capable of
reproducing the experimental effects of ONOO�-dependent late
ROS production, and Ca2+-dependent early ROS production, but it
underestimated the impact of Tiron.

3.4. Cell sensitization to TRAIL-induced apoptosis

We have thus far studied LY30 effects on ROS but not on cell
viability. To understand how LY30 induces HeLa cell sensitization
to TRAIL-induced apoptosis, we measured cell viability after
LY30 + TRAIL treatment, in cells that had been pre-treated with one
of the following scavengers/inhibitors: FeTPPS, EGTA-am, Tiron,
DDC, or catalase (Fig. 6). DDC is an inhibitor of SOD (superoxide
dismutase), and it causes increased O2

�� accumulation. Catalase is
an antioxidant enzyme that specifically scavenges H2O2, and
extracellular catalase can lower intracellular H2O2 levels because
H2O2 is membrane permeable.

HeLa cells treated with LY30 + TRAIL exhibited 40% viability,
compared with untreated HeLa (100% viability). Pre-treatment
with FeTPPS (100 mM) improved cell viability from 40% to 65%
(25% rescue with p = 0.0063), and the inactive analogue FeCl3 had
no effect (Supplementary Fig. S3), suggesting an essential role for
ONOO� in LY30-induced sensitization to apoptosis. Quantified cell
viability showed that EGTA-am, Tiron and DDC were also able to
rescue cell death significantly (18%, 20% and 28%, respectively).
Interestingly, catalase did not cause significant rescue of cell death,
so we measured whether catalase decreased LY30-induced ROS
ator experiments. (a) DCFDA intensity was measured after HeLa were treated with

) The probability distribution of DCFDA from Fig. 4 has been plotted as fold-change

edium and high levels have been converted into absolute concentration using the

d, where DCFDA1
averaged, DCFDA2

averaged and DCFDA3
averaged represented averaged

veraged is the absolute DCFDA level after conversion, and it is then normalized to the

tions for each average of the top 12 models.



Fig. 6. Cell viability of HeLa cells after LY30 � TRAIL treatment, in the presence of scavenger/chelator compounds. Cell viability (a) with/without FETPPS (100 mM), (b) with/

without EGTA-am (50 mM), (c) with/without Tiron (10 mM), (d) with/without DDC (200 mM), (e) with/without catalase 2000 units/ml or 4000 units/ml.
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(Supplementary Fig. S4). Catalase suppressed a significant fraction
of DCFDA fluorescence induced by 5 min of LY30 treatment, but it
had no significant impact on the DCFDA levels induced by longer
incubations of LY30. This suggests that H2O2 is not a significant
fraction of LY30-induced ROS in HeLa, except at very early time
points.

To represent our best current understanding of LY30 effects in
HeLa, the Bayesian modelling consensus from Figs. 3 and 4 was
extended as follows. The consensus links between RNS, O2

��, Ca2+

and DCFDA were retained (depicted as straight, solid lines in
Fig. 7a), and RNS was renamed nitric oxide (NO) because its
training data came from the NO-specific dye DAF. New variable
nodes were created for ONOO�, H2O2, and cell sensitization to
TRAIL (‘‘Sensit’’). Then, to connect the new variables with the
network, possible pathways (dotted arcs in Fig. 7a) were added
manually based on published literature. Directed edges were
inserted from O2

�� and NO to the ONOO� variable node because
O2
�� and NO react strongly to produce ONOO�. Additional ‘‘dotted’’

arrows were added from Ca2+ to H2O2 [24,37], from O2
�� to H2O2
[38,39], and from most of the species to apoptosis sensitization.
Finally, exogenous binary variables (present/absent) were created
for the inhibitors FeTPPS, EGTA-am, Tiron, DDC, and catalase.
Negative influences were added for FeTPPS towards ONOO�, for
EGTA-am towards Ca2+, and for catalase towards H2O2. The obvious
effect of DDC on superoxide was added, as well as the published
side-effect that DDC can suppress NO levels. A negative effect of
Tiron on superoxide was added, along with the published side-
effect that Tiron can decrease ONOO�. The ‘‘exogenous’’ variables
(the inhibitors and scavengers) and their causal links are shaded
grey in Fig. 7a.

Starting with the network connectivity in Fig. 7a, we used the
expectation-maximization algorithm to estimate the causal
contributions of the dotted arrows by optimizing the fit between
the model and the experimental data. The exogenous effects (grey
arrows) were not adjusted. The training dataset for the parameter
estimation was the cell viability data from Fig. 6. The Supplemen-
tary Text provides complete information for the construction of the
extended model with viability.



Fig. 7. Modelling Cell sensitization to TRAIL. (a) An initial network structure was generated using the consensus links of Fig. 2 (straight solid lines), adding additional variable

nodes, and creating hypothetical edges (dashed arcs) based on published literature. (b) Conditional probability tables were generated by the BNT software (parameter

estimation algorithm) using cell viability as the training dataset. The result is an extended model. The causal linkages in the conditional probability tables of the extended

model have been summarized in the shading of the curved edges: thick black arrows for strong effects, grey arrows for moderate effects, and thin dashed edges for negligible

effects. (c) Comparison of cell viability results from the extended model and from the experiments, to assess whether the model can recapitulate the training dataset. Black

bars represent simulated cell viabilities and grey bars represent experimentally observed viability. (d) Cell viability prediction for a separate independent test, and

experimental confirmation of the prediction. For the single and double inhibitor treatments, HeLa cells were incubated with FeTPPS (100 mM) for 1 h before adding LY30, and/

or with EGTA-am (25 mM) for 15 min before adding LY30.
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The resulting model (Fig. 7b) shows the literature-based effects,
shaded according to computed strength of causation: thick black
lines for strong causation, grey lines for moderate causation, and
thin dashed lines for insignificant causation. This network serves as
an automated interpretation of likely mechanisms, corresponding
to our experimental observations. Fig. 7c shows that the extended
model was able to recapitulate the experimental results in the
training set, as expected. Finally we sought to compare the model
against a separate test. The model was simulated, for each possible
pair of scavenger/inhibitor compounds, plus LY30 and TRAIL, to
obtain predictions of cell sensitization with scavenger combina-
tions (Supplementary Fig. S5). The results predict that combining
EGTA-am and FeTPPS would cause the greatest rescue of cell death.
We conducted a cell viability assay with FeTPPS and EGTA-am,
together with LY30 and TRAIL. As shown in Fig. 7d, the predicted
cell viability showed close agreement with the observed viability.

4. Discussion

Previous literature on cell stress signalling has elucidated many
causal linkages between Ca2+, various species of ROS, and various
species of RNS, yielding countless possible pathways downstream
of LY30 to mediate cell sensitization to apoptosis. We chose
Bayesian networks to model LY30-induced effects for several
reasons. Firstly, the directed edges in Bayesian networks are a
flexible architecture to permit fast generation and testing of many
hypotheses about connectivity. Secondly, the predictions derived
with a Bayesian model are qualitative and thus are less sensitive
to changes in parameter values [40]. Thirdly, statistically
insignificant changes in observed variables can be represented
as low-probability changes in a Bayesian network variable (rather
than being ignored); this flexibility allows evidence from many
minor correlations to accumulate mathematically into a significant
net effect. This third benefit explains why the Bayesian network
modelling was able to infer an antagonistic relationship between
NO and O2

�� (Fig. 2), simply based on inverse correlations in the
time series trends, and not based on any prior knowledge of
chemistry.

A crucial weakness of Bayesian network modelling is that it
cannot represent feedback loops or cycles of causality. The species
studied in this project are highly interdependent and likely to
participate in feedback loops. Feedback mechanisms have been
excluded from our analysis, due to our choice of Bayesian network
formalism, and we do not know how feedback would impact the
analysis. Another weakness of our approach is vulnerability to
discretization effects, which can flatten important information, or
amplify random noise, depending on the arbitrary boundaries of
the high/medium/low categories. Our ‘‘equal width interval
binning’’ method of discretization caused artificial amplification
of the O2

�� fluctuations (Supplementary Fig. S4). The O2
��

fluctuations likely aided in detecting the negative correlation
between NO and O2

��, but this amplification of a ‘‘flat’’ signal could
have been harmful in another context.

Bayesian modelling analysed time series observations of
correlational experiments (without any mechanistic perturbations),
and yielded predictions for the causal contributions of RNS, Ca, and
O2
�� to LY30-induced DCFDA fluorescence. Blocking RNS was

predicted to suppress DCFDA induction, especially for LY30
treatments �30 min. Seeking biological mechanisms that could
be responsible for such an effect, we speculate that RNS could affect
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DCFDA because NO can lead to production of ONOO� [41,42], which
is an effective trigger for DCFDA fluorescence [41,42]. Indeed this
mechanism is consistent with the ‘‘test set’’ experiment, in which the
ONOO� scavenger FeTPPS caused >80% decrease in LY30-induced
DCFDA fluorescence, for long incubation times.

Another prediction from the Bayesian modelling was that
chelation of Ca2+ would have some inhibitory effect on LY30-
induced DCFDA fluorescence. For brief LY30 incubations, this
prediction had high confidence (small error bar in Fig. 5b), but for
simulations of long incubations, the top-12 models exhibited
unusually large disagreement. The test-set experiment with EGTA-
am validated the importance of Ca2+for early induction of DCFDA.
In theory, Ca2+could affect DCFDA through the mitochondrial
pathway, but the low MitoSOX readings in Fig. 1 make that less
likely. We speculate that the mechanism for the observed effects of
Ca2+ might be direct production of H2O2 through Ca2+-dependent
NOX5 activation [24].

The third prediction from the Bayesian modelling was that
LY30-induced ROS was not mediated by O2

��. This prediction is
exceedingly intuitive and would seem obvious, given the series of
experiments showing that LY30 did not increase O2

�� levels.
Remarkably, Tiron treatment to scavenge O2

�� [43] did cause a
significant decrease in DCFDA (Fig. 5) and significant improvement
in cell viability (Fig. 6). One possible interpretation is that normal
concentrations of O2

��, which are in excess of NO [26], allowed
LY30-induced NO to react with O2

�� to produce ONOO�, but
removing O2

�� prevented the LY30-induced NO from making
ONOO�. Multiple previous studies have found Tiron to decrease
apparent ONOO� levels and similar mechanisms have been
observed with another SOD mimetic, Tempol [44]. This scenario,
in which ONOO� mediates the impact of Tiron, is not falsified by
the observation of constant O2

�� levels after LY30 treatment,
because LY30 could in theory increase O2

�� production at
approximately the same rate that LY30-induced NO depletes the
additional O2

��. Another different interpretation is that Ca2+

instead of O2
��might have mediated the effects of Tiron. Tiron has

been shown to bind Ca2+ [45] and we know that DCFDA levels are
sensitive to Ca2+ in this context. We can conclude that Tiron
significantly suppresses LY30-induced effects, but we cannot
conclude whether some of this effect is mediated by ONOO� or
other effects besides O2

��.
The mechanisms by which LY30 sensitizes HeLa to TRAIL-

induced apoptosis were probed by measuring cell viability after
LY30 + TRAIL, with and without scavengers/chelators for potential
mediators of the sensitization. ONOO� can cause cellular damage
and necrosis, but low levels can lead to nitrosative stress and
apoptotic death [14], which may be a promising avenue for future
cancer therapies [46]. ONOO� is more reactive than H2O2, NO, or
O2
��, and low levels of ONOO� can activate DCFDA fluorescence

very potently [41]. In our LY30 experiments, scavenging ONOO�

caused a very strong rescue of DCFDA fluorescence, and a very
strong rescue of HeLa viability after TRAIL treatment (Fig. 6). We
conclude that ONOO� is a central mediator of LY30-induced
effects, both ROS and apoptosis sensitization.

Other perturbations were also able to rescue cell viability, such
as EGTA-am to chelate Ca2+. A causal effect of Ca2+ towards
apoptosis sensitization is consistent with the importance of Ca2+ as
a mediator of LY30-induced ROS, which was confirmed in Fig. 5.
The extended model with cell viability (Fig. 7) inferred that Ca2+

has a significant causal effect on H2O2. Future work should test
whether LY30-induced Ca2+ can produce H2O2 directly, for
example through NOX5 [24].

More surprising were the results with DDC to block
conversion of O2

�� into H2O2, and Tiron to scavenge O2
�� and

accelerate conversion into H2O2. Because DDC and Tiron
promote opposite O2

�� effects (decreasing or increasing
conversion into H2O2), it is puzzling that both these treatments
had the same effect, blocking sensitization to apoptosis. Another
puzzle is why modulators of O2

�� would have any impact on the
effects of LY30, given that LY30 treatment caused no significant
change in O2

�� levels. In the discussion of the DCFDA
experiments, we interpreted the Tiron effects either as a non-
canonical effect on Ca2+, or as creating a new bottleneck at O2

��

availability which limited production of ONOO�. Both inter-
pretations are plausible explanations for the effect of Tiron on
cell viability. The impact of DDC on cell viability could be
mediated by O2

��, or by off-target effects of the DDC inhibitor.
O2
�� has potent anti-apoptotic effects [47], and elevation of O2

��

could plausibly explain the rescue of cells by DDC treatment.
Alternatively, DDC can reduce intracellular NO by inhibiting
inducible NO synthase (iNOS) [48,49]. If DDC suppresses NO in
LY30-treated HeLa, then DDC could block LY30 effects by
blocking ONOO� production, rather than through increased
superoxide. Computational modelling selected NO suppression
as most likely for the extended model in Fig. 7b. Future work
should confirm whether O2

�� truly mediates the effects of Tiron
and DDC on the apoptosis sensitization of LY30, or whether off-
target effects on Ca2+ and NO are responsible.

DCFDA was once thought to be specific for H2O2 [50], but is now
understood as a more general marker of ROS. DCFDA experiments
with catalase showed that LY30 did cause H2O2 production at
early time points (Supplementary Fig. S6), but much of LY30-
induced DCFDA fluorescence was not H2O2 (i.e., not affected by
catalase). To ascertain the involvement of H2O2 in LY30-induced
cell sensitization, we tested whether catalase blocked cell death
after treatment with LY30 + TRAIL. Catalase at 2000 units/ml and
4000 units/ml showed little rescue of cell viability (Fig. 6e),
indicating that H2O2 is not responsible for LY30-induced
sensitization to TRAIL in HeLa. Since H2O2 has exhibited
consistently pro-apoptotic effects in diverse contexts [51], we
are led to speculate that LY30-induced H2O2 might be having some
degree of pro-apoptotic effects in HeLa, but the downstream
impact of H2O2 on viability could be masked in HeLa by the faster
apoptotic effects of ONOO�.

Previous work found that catalase blocked LY30-induced
sensitization of LnCaP cells to vincristine-induced apoptosis [3],
and blocked LY30-induced sensitization of SHEP-1 neuroblastoma
cells to TRAIL-induced apoptosis [5], but did not block sensitization
of HeLa to TRAIL-induced apoptosis [4]. Different cellular capaci-
ties to produce NO and RNS might explain the observed cell type
differences in the importance of H2O2 versus ONOO� for cell
sensitization. Neuroblastoma cells have low levels of iNOS [52],
and we speculate that LY30 induces more NO production in HeLa
than in SHEP-1. In HeLa, high NO levels would cause more ONOO�

and more peroxynitrite-dependent death. This effect would be
compounded if HeLa cells are more sensitive to NO than other cell
types, as previously reported [53]. Future work should compare the
expression levels of NOS and NOX isoforms in different types of
cancer, to understand differential regulation of apoptosis sensiti-
zation. Our experimental and computational findings agree that
LY30 triggers several pathways of stress, moving cancer cells closer
to apoptosis by multiple simultaneous mechanisms. In these
highly primed contexts, the ‘‘final straw’’ that causes death may be
a small increase in a reactive species or a second messenger, and
the final apoptotic outcome may depend on protein levels and cell
types.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.bcp.2012.08.028.
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