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ABSTRACT

Biological network analysis often aims at the target identifi-
cation problem, which is to predict which molecule to inhibit
(or activate) for a disease treatment to achieve optimum ef-
ficacy and safety. A related goal, arising from the increasing
availability of high-throughput screening (HTS), is to suggest
many molecules as potential targets. The target prioritiza-
tion problem is to predict a subset of molecules in a given
disease-associated network which is likely to include suc-
cessful drug targets. Sensitivity analysis prioritizes targets
in a dynamic network model according to principled crite-
ria, but fails to penalize off-target effects, and does not scale
for large networks. In this demonstration, we present PANI
(Putative TArget Nodes Prloritization), a novel interactive
system that addresses these limitations. It prunes and ranks
the possible target nodes by exploiting concentration-time
profiles and network structure (topological) information and
visually display them in the context of the signaling network.
Through the interactive user interface, we demonstrate var-
ious innovative features of PANI that enhance users’ under-
standing of the prioritized nodes.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]|: Biology and genetics.

General Terms

Design, Human Factors, Performance
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1. INTRODUCTION

High-throughput screening (HTS) is frequently used in drug
discovery and biological fields, such as genetics. The effi-
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ciency of HTS in performing parallelized experiments has led
to an increase in customized designs for high-throughput
experiments. Designing HTS experiments involve decision
on the treatments and controls for the input samples and
also the type of measurement required (e.g., which genes
to measure and which behaviour to quantify). These deci-
sions are particularly challenging when the signaling network
under investigation contains many different molecules. For
instance, in the sea urchin endomesoderm gene regulatory
network [8], there are 622 nodes, each of them represent-
ing either a gene, protein or mrnA in different embryonic
territories. Measuring the activity of every node generates
data of very high dimensions which make subsequent analy-
sis challenging. Target prioritization tools address this issue
by identifying a subset of nodes, that are relevant to the
biological problem being investigated, for further studies.
In this demonstration, we present a novel data-driven
graphical target prioritization system, called PANI (Putative
TArget Nodes Prloritization), which uses network informa-
tion and simple empirical scores to prioritize and rank bio-
logically relevant target molecules in signaling networks [3].
Given a signaling network associated with a particular dis-
ease H = (Vu, Fy) and an oulput node v, € Vg, it identifies
those nodes which when perturbed are able achieve desirable
efficacy and safety in terms of regulation of v,. An output
node is a protein that is either involved in some biological
processes which may be deregulated, resulting in manifesta-
tion of a disease, or be of interest due to its potential role
in the disease (e.g., ERK in the MAPK-PI3K network [4]).
PANI is a generic system that takes a two-phase approach
to identify and rank target molecules. First, it performs
target pruning to obtain a set of nodes, denoted as T, for
which a path exists from t € T to v,. The pruning step re-
duces the target search space and hence computational cost.
Then, PANI calculates the putative target score of each node
t, which is a weighted rank aggregation of the profile shape
similarity distance (PSSD) [3], the target downstream effect
(TDE) [3] and the bridging centrality (BC) [5] of t. PSsSD
identifies the most relevant upstream regulators of v, and
measures the similarity between the concentration-time se-
ries profiles (plots of a node’s concentration against time) of
nodes using a customized distance measure; TDE assesses the
potential impact on the network when a node is perturbed
based on the probability of perturbing a downstream node w
and the likelihood of w causing off-target effect. Node w is
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Table 1: Execution times.

downstream of v if there exists a path from v to w; BC iden-
tifies nodes that are located at a connecting bridge between
modular subregions in a network [5] and is the product of
two ranks, namely, the inverses of betweenness centrality
[2] and bridging coefficient [5]. The putative target score is
then used to prioritize the nodes.

In order to facilitate the understanding of the prioritized
nodes in the context of the signaling network, we provide
several innovative interactive features. First, we superim-
pose the results onto the graphical representation of the
network for users to visualize the location of the priori-
tized nodes within the network. A filtering mechanism al-
lows users to view the top-k prioritized nodes, improving
result visualization for larger networks. Second, we provide
an interactive display of the signaling network to facilitate
study. For instance, Cluster Mode provides visualization
of the strongly connected components (sccs) in different
colours, giving users a sense of the modular layout of the
network. Third, we provide users greater ease in assessing
the properties of prioritized nodes by consolidating and cat-
egorizing the information in a single platform. For instance,
we display their concentration-time series profiles, reactions
that they are involved in and relevant web links to external
online databases (e.g., UniProt [1]) containing additional in-
formation. In summary, to the best of our knowledge, PANI
is the first target prioritization system to be demonstrated
in a conference venue.

2. RELATED SYSTEMSAND NOVELTY

Global sensitivity analysis (GsA)-based techniques, such

as multi-parametric sensitivity analysis (MPSA) [14] and SOBOL

[13], are frequently proposed for target prioritization. They
prioritize nodes using the sensitivity values, which mea-
sure the effect of a parameter perturbation (e.g., a kinetic
rate constant change) on the output node. Although these
GsA-based methods can identify sensitive parameters, they
have several limitations. First, they require simulating the
network behavior for a combinatorial number of different
parameter combinations, making them computationally ex-
pensive, especially for larger networks (see Table 1). For in-
stance, these techniques fail to complete the analysis on the
endomesoderm network [8] containing 622 nodes on a mod-
ern server machine due to memory problem. Second, these
methods generally identify parameters resulting in maxi-
mum output node perturbation without considering off-target
effects. Third, these methods may miss “insensitive” nodes
that may be important drug targets, since they only con-
sider one property (sensitivity) in their ranking. For in-
stance, MPSA [14] and SOBOL [13] ignore Akt as a target
node although active Akt can inhibit activation of ERK in
differentiated myotubes via Raf-Akt interaction [12].

PANI is designed to address the aforementioned limita-
tions. The key differences between PANI and GSA-based ap-
proaches are as follows. PANI ranks the nodes by computing
an aggregate score that is based on certain structural and
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Figure 1: Architecture of PANI.

kinetic properties of the network, instead of using sensitiv-
ity and focussing solely on the kinetic aspect of the network.
Furthermore, unlike PANI, the GSsA-based approaches do not
use any pruning technique to filter out “irrelevant” nodes
and reduce unnecessary computational cost. Indeed, PANI
has been demonstrated to prioritize a majority of known
drug targets in the MAPK-PI3K network [3]. Lastly, the PANI
system provides interactive features such as Cluster Mode
and superimposition of prioritization results on the signal-
ing network for users to learn more about the characteristics
of the network and the role of the prioritized nodes in the
network.

3. SYSTEM OVERVIEW

The PANI system is implemented in Java JDK 1.6 us-
ing open-source libraries JFreeChart, libSBML, JUNG and
FastpTw. The reader may refer to details in [3]. Figure 1
shows the architecture of PANI which consists of the follow-
ing modules.

The PANI GUI Module: The cul of Pani (Figure 2a)
coordinates various modules of PANI and consists of five
panels. In order to perform the target prioritization, the
user has to select the input files containing the network
model and the concentration-time series profiles using the
toolbar (Figure 2a, Panel 1). After the files are read using
the libsBML library, the Graph Constructor constructs the
graphical representations of the model (model graph) using
the JUNG library. The Result Visualizer displays the list of
nodes in the network in the Information Panel (Figure 2a,
Panel 2), the model graph in the Satellite Graph View Panel
(Panel 3), and supports interaction with the graph through
the Interactive Graph View Panel (Panel 4). Specifically,
the Satellite Graph View Panel displays the overall layout of
the graph while the Interactive Graph View Panel supports
interaction with the graph, such as zooming in or out at a
specific part of the graph. After the user has selected the
output node from the Information Panel, the prioritization
process can be initiated from the toolbar. The prioritiza-
tion result is displayed in both Panel 2 as a ranked list of
nodes and Panel 4 as nodes of varying size (larger nodes
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Figure 2: (a) Graphical user interface of PANI, (b) Top-10 prioritization results superimposed on the MAPK-PI3K
network [4] with double phosphorylated Erk as output node, and (c) Cluster Mode view of the network.

have higher ranks) (Figure 2b). The user can also view ad-
ditional node properties (discussed later) of selected nodes
in the Node Properties Visualizer (Panel 5).

The Graph Constructor Module: The Graph Construc-
tor creates graphical representations of the user-selected sig-
naling model which are subsequently used for visualization
and analysis. The signaling model can be represented as
a directed hypergraph [7] where the nodes and hyperedges
symbolize molecules (e.g., proteins) and interactions, respec-
tively. Analysis of directed hypergraphs is generally more
complex than graphs and many graph algorithms cannot
be used directly on hypergraphs [7]. Hence, they are of-
ten transformed into an equivalent bipartite or substrate
digraph for analysis [7]. We use the bipartite digraph rep-
resentation since it retains the original information of the
hypergraph. Signaling networks generally contain strongly
connected components (scc) due to the existence of feed-
back loops that are common in complex regulatory control
[9]. The bipartite digraph can be further simplified into a
directed acyclic graph (DAG) representation by collapsing
these sccs into meta nodes. The Graph Constructor cre-
ates three different graphical representation of the biologi-
cal signaling model, namely, the directed hypergraph, the
bipartite digraph and the DAG. The directed hypergraph is
used for the display of the model in the Satellite Graph View
and Interactive Graph View Panels; the bipartite digraph is
for processing of node properties such as TDE and BC using
graph algorithms in the Target Prioritizer module; and the
DAG is for analyzing reachability information of node pairs
in the Target Pruner module.

The Target Pruner Module: The Target Pruner handles
the pruning of irrelevant candidate nodes. The relevancy of
the candidate nodes is determined based on a reachability
rule which is the existence of a path from the candidate
node to the user-selected output node. The Target Pruner
computes the reachability information using the pAG. It
first indexes the DAG using depth-first traversal, then uses
the index to determine the reachability of each candidate
node to the output node. Nodes that can reach the output
node are retained for subsequent analysis.

The Target Prioritizer Module: The Target Prioritizer
computes the putative target score for prioritizing the nodes
using several submodules.

The PssD Ranker Module: This module computes the
pPssD and uses it to rank the nodes with reference to the
output node. The PSSD of node u with respect to the output
node v,, denoted as ®(y,y,), is the minimum dynamic time
warping distance (DTW) [6] of two pairs of concentration-
time series profiles, namely, (Cu,Cv,) and ({l,Cv, ). Hence,
D (40,)=Min(DTW(Cu, Cv, ), DTW((r,s v, )) where (o and ¢,
are the original and inverted concentration-time profiles of
node u, respectively [3]. We use the FastpTw library to
compute the DTW value.

The TDE Ranker Module: This module computes the TDE
and uses it to rank the nodes. The TDE of node u, de-
noted as Y, is the sum of the effect of each of its down-
stream node w, which in turn is measured by the product
of w’s degree and the probability of perturbing w. Hence,
YTy = Zwew(p"’w X 0,) where py,. is the probability of
perturbing w € W when target node w is perturbed and 6.,
is the degree of w [3].

The BC Ranker Module: This module computes the BC
(bridging centrality) and uses it to rank the nodes. The
BC of node u, denoted as A, is the product of two ranks,
namely, the inverses of betweenness centrality [2] and bridg-
ing coefficient [5]. Hence, A, = Ui x W1 where UL
and U oL are the inverse rank of betweenness centrality and
bridgingucoeﬂicient, respectively [5].

The Putative Target Score Ranker Module: This module
computes the putative target score as a weighted sum of the
ranks of the PSsD, the TDE and the inverse of BC obtained
from the aforementioned submodules. Specifically, the pu-
tative target score of node u is score, = Zcec(wC X Weiy)
where C' is the set of node properties {®,,, Y, %}, Wy is
the rank of u based on property ¢ € C; w. is the weight
of property ¢ € C and ZCGC we = 1. The computed puta-
tive target score is then used to prioritize the nodes and the
results are formatted for display by the Result Visualizer.

The Result Visualizer Module: The Result Visualizer
handles the visualization aspect of PANI, such as the display
of the graph model, using several submodules.



The Cluster Mode Visualizer Module: This module han-
dles the modular layout display of the graph model which
is provided as a viewing option in the toolbar. It assesses
the sccs information from the Graph Constructor and then
assigns nodes in the same sccC to the same color (Figure 2¢).

The Graph Result Visualizer Module: This module su-
perimposes the prioritization result on the graph model by
assessing the prioritization results from the Target Prior-
itizer and then assigning node sizes based on their prior-
itized ranks. Figure 2b shows the superimposed prioriti-
zation results specific for double phosphorylated Erx on the
MAPK-PI3K signaling network [4]. Nodes having larger radius
are prioritized over those with smaller radius.

The Top-k Filter Module: This module facilitates the dis-
play of the top-k results. The k value can be specified using
the toolbar and the module increases the transparency of
the nodes outside this top-k set to de-emphasize them in
the Interactive Graph View Panel (Figure 2b), allowing the
user to view the results with increased clarity.

The Node Properties Visualizer Module: This module han-
dles the visualization of the node properties such as the
concentration-time series profiles of user-selected nodes, the
roles of the nodes in reactions in the signaling network and
the web links for external databases containing additional
node information. The concentration-time series profiles are
plotted using the JFreeChart library. The role of the nodes
can be obtained from their edges which are stored in the
Graph Constructor. For instance, an incoming edge to a
node indicates that the node is a product of the reaction
represented by that edge. We make use of the annotations
in the signaling network model (e.g., UniProt 1D) to inter-
face with external databases (e.g., UniProt [1]).

4. DEMONSTRATION OBJECTIVES

Our demonstration will be loaded with several signaling
network models (e.g., the MAPK-PI3K network [4], myosin
light chain (MLc) phosphorylation [11], endomesoderm net-
work [8]) of different sizes obtained from the Biomodels.net
database [10] and the concentration-time series profiles of
the nodes in these models. The concentration-time series
profiles are generated by simulating these models using Co-
pasi. We shall use these models to interactively demonstrate
the process of target prioritization, understand the charac-
teristics of the network, and the roles the prioritized targets
play in the network. A demonstration video is available at
http://www.youtube.com/watch?v=UjMBe9FWvvI.

Interactive target prioritization process. The main
goal of the demonstration is for the audience to experience
the process of fast discovery of superior quality putative tar-
get nodes in signaling networks. Using the PANT GUI, we will
demonstrate target prioritization specific to a user-selected
output node and how the interactive features of PANI such
as the Top-k Filter can be used to view the prioritization
results (Figure 2b). The users can use the superimposition
feature of the prioritization results on the graph model to
visualize the relationship of the target nodes in the network
(e.g., the distance between the nodes and the position of the
nodes in the network). Additionally, the user will be able to
experience the fast response time of PANI to perform target
prioritization for networks of different sizes. Users can also
load their own models described in the sBML format. The
Copasi tool will be provided to assist the users in generating
the concentration-time series profiles.

Understanding the modular layout of the network.
We shall exploit the Cluster Mode to display the modular
layout of the network (Figure 2c). Users can visualize the
structure of the network easily as the scCs are presented in
different colors. When complemented with the prioritization
results, users can enhanced their understanding of the roles
of the target nodes in the network. For example, nodes in a
particular module may be favored as targets for a particular
network, suggesting that this module may play a critical
role, and suggesting further experiments on the module.

Understanding properties of prioritized nodes. We
shall demonstrate the use of the interactive features pro-
vided by the Node Properties Visualizer to understand prop-
erties of user-selected nodes (Panel 5 in Figure 2a). Specifi-
cally, we will show how the users can view the dynamic re-
lationship between different nodes using the concentration-
time profiles comparison charts; learn about roles of the
nodes in network (e.g., the reactions they are involved in and
the roles they play in the reactions); and find out additional
properties using web links to external online databases.
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