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ABSTRACT A local rule-based theory is developed which
shows that the self-assembly of icosahedral virus shells may
depend on only the lower-level Interactions of a protein subunit
with its neighbors-i.e., on local rules rather than on larger
structural building blocks. The local rule theory provides a
framework for understanding the assembly of icosahedral
viruses. These include both viruses that fall in the quasi-
equivalence theory of Caspar and KMug and the polyoma virus
structure, which violates quasi-equivalence and has puzzled
researchers since it was first observed. Local rules are essen-
tially templates for energetically favorable arrangements. The
tolerance margins for these rules are investigated through
computer simulations. When these tolerance margins are ex-
ceeded in a particular way, the result is a "spiraling" malfor-
mation that has been observed in nature.

It was also generally believed that proteins took on only
one conformation, particularly very stable proteins such as
those that form virus shells. Recent evidence indicates that
virus-shell proteins in fact take on several conformations
(10-12) as has been proposed (5, 13). This important obser-
vation informs the approach to virus-shell assembly pre-
sented below.
The primary idea behind a local rule-based theory is that,

if the protein subunits assume different conformations during
the assembly process depending on their relative positions, a
protein binding to the structure has enough local information
to "know" where to bind. In particular, possible assembly
pathways can be given that depend only on the interactions
ofa protein with its immediate neighbors rather than on larger
structural building blocks.

The study of virus-shell structure and assembly is crucial for
understanding how viruses reproduce. One notable aspect of
virus shells is their highly regular structure: they are gener-
ally spherical and possess strong symmetry. Almost all
human viruses and many plant and animal viruses have
icosahedral shells (1, 2). These shells are constructed of
repeated protein subunits, or coat proteins, which surround
their condensed DNA or RNA genomes. A given shell
usually consists of hundreds of copies of one protein, but
sometimes copies of two or three different proteins.
Many of these viral shells appear to "self-assemble," or

spontaneously polymerize in the host cell environment, with
only limited aid from cellular machinery (3, 4). Sometimes
assembly is assisted by scaffolding proteins, which assemble
with the coat proteins to form a precursor shell but are
removed before the shell matures. At first glance, shell
assembly seems easy to understand because the structure is
so regular. In fact, it has been difficult to determine the actual
pathway through which hundreds of subunits interact to form
a closed shell (5). This has been particularly difficult to
explain for icosahedral viruses because often the same pro-
tein occurs in nonsymmetric positions.

Previous attempts at explaining the assembly process have
focused on the icosahedral symmetry through the Caspar and
Klug theory of "quasi-equivalence" (6). This theory classi-
fies icosahedral shells whose protein subunits all have very
similar (quasi-equivalent) neighborhoods and form hexaimers
and pentamers in the virus shell. The general belief was that
shells were formed by assembly of these pentamer and
hexamer building blocks. However, in the most closely
analyzed experimental system for studying the assembly
process, the bacterial virus P22, closed icosahedral shells
assemble efficiently from purified monomeric protein sub-
units, even though the subunits are arranged as pentamers
and hexamers in the final shell (7-9). This suggests that the
emphasis on the final symmetry of the structure has been a
barrier to understanding shell assembly.

Icosahedral Structure

All of the viruses discussed in this paper have what is called
"icosahedral structure" (Fig. 1 Left). Caspar and Klug (6)
pointed out the link between icosahedra and virus shells in
their theory of quasi-equivalence, which classifies icosahe-
dral shells according to their T number. Their definition of T
number is equivalent to the number of subunits per corner of
each triangular face; a virus thus has 60 Tsubunits altogether.
Caspar and Klug assumed that these shells were formed of a
hexagonal lattice with pentamers at the fivefold axes of
symmetry and with the remaining subunits arranged in hex-
amers. A mathematical consequence of these assumptions is
the restriction of the possible set of T numbers to the
sequence 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, . . . ; these are
the numbers of the formf2(h2 + hk + k2), where f, h, and k
are nonnegative integers (6, 14, 15).

This paper represents these shells in a way that better
illustrates local rules. For example, a T = 1 shell is typically
viewed as an icosahedron except that, instead of having one
protein at each vertex, it has a protein at each corner of each
triangular face (Fig. 1 Center). The same structure can be
redrawn by grouping the proteins at each vertex into pen-
tamers (Fig. 1 Right). A graph representation of an icosahe-
dral structure can be obtained by replacing the proteins with
vertices and drawing an edge between two vertices when
there is a binding interaction between the two proteins (Fig.
2). (For the purposes of abstraction, we refer to the interac-
tions between two proteins, comprising electrostatic, van der
Waals, or other noncovalent chemical interactions, as a
single binding interaction.)

Local Rules

The local rule theory as applied to icosahedral structures is
now described. For simplicity, we will assume virus shells
contain a single kind of coat protein; the theory of assembly
presented here works in all cases.

Abbreviation: SV40, simian virus 40.
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FiG. 1. (Left) An icosahedron has fivefold rotational symmetry at its 12 vertices, threefold rotational symmetry at its 20 triangular faces,
and twofold rotational symmetry at its 30 edges. There are 60 symmetric regions in an icosahedron, each one lying in a third ofa triangular face.
(Center) Each triangular face has three proteins, one in each symmetric region. (Right) An icosahedral structure with the same symmetry as
in Center but with pentameric clustering. One triangular group is shaded for contrast.

For each possible T number or shell size of an icosahedral
virus, a set (or several possible alternative sets) of local rules
exist that build the corresponding shell. These local rules are
of the following form. We assume that identical protein
subunits take on a small number of distinct conformations.
The local rules then specify, for each conformation, which
other conformations it can bind to and the approximate
interaction angles, interaction lengths, and torsional angles
that can occur between them. By following this local infor-
mation, the subunits will form a closed icosahedral shell with
the desired T number. Some sets of local rules require the
assembly process to start with a given initiation complex to
guarantee formation of the desired structure.

Loecal Rules for Quas-Equivalent Viruses. The local rule
theory can be illustrated through the example of the bacte-
riophage P22 virus shell, which is a T = 7 virus. Seven
conformations of the coat protein, or shapes, have been
observed in the P22 precursor capsid (12); however, it is not
clear that these are all truly distinct. Let us first suppose that
there are seven conformations. Fig. 3 Top Left gives the rules
for how one of these, the type 1 conformation, chemically
binds. A type 1 conformation has a binding site for a type 2
conformation and two binding sites for type 1 conformations.
Similar local rules can be constructed for all the seven
conformations in P22 (Fig. 3). The binding interactions in the
local rules are present in micrographs of the shell; however,
additional interactions may also be present (12), which may
have only a secondary effect on the assembly process.
As soon as a subunit has at least one binding interaction,

these rules can be applied unambiguously to determine the
subunit's remaining neighbors. The different orders of ap-
plying local rules give the possible ways in which the assem-
bly process might proceed. While it would be consistent with
the local rules that pentamers and hexamers initially form and
then bind together as previously believed, this is not required

by the theory. Chemically speaking, the local rules do not
dictate which event comes first: a protein adopting a confor-
mation or a protein acquiring a binding interaction.
The question remains, what structures can be built if these

local rules must be respected? Applying the local rules to an
arbitrary starting protein can result in a T = 7 shell or some
subset of the shell, but nothing else (Fig. 4). Computer
simulations verified this fact for the local rules in Fig. 3. The
simulations worked as follows: An energy model was set up
by assuming a quadratic penalty for deviations from the
interaction angles, torsional angles, and interaction lengths
given in the rules. An existing binding site was chosen as the
site to attach the next protein; if no candidate proteins able
to attach were in the existing structure within one-protein
diameter of the binding site, a new protein was added. The
local rules determined the conformation and location of each
new protein. After a protein was added, the resulting struc-
ture was optimized to minimize energy by iterating optimi-
zation steps. In each step, all of the proteins were moved in
accordance with the forces and torques computed from the
energy model. The binding sites were examined in both
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FIG. 2. (Left) A portion of a T = 7 virus shell, with the seven
subunits in a corner unit shaded, the pentamers and hexamers drawn
in light lines, and the triangular face in a heavy curved line. The
protein subunits are depicted as circles. (Right) The same overall
structure as in Left but redrawn in a graph representation to
emphasize binding interactions. Every protein is a vertex, and every
binding interaction is an edge.
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FIG. 3. Possible local rules for a left-handed T = 7 virus. Each
protein subunit is represented as a circle or part of a circle labeled
with its conformation. There is sometimes a direction associated with
each edge. Angles between binding interactions are the approximate
number of degrees between the centers of the protein subunits in
three dimensions. Angles were not based on any particular virus but
were first derived from a physical model ofa spherical T= 7 structure
and were subsequently refined by using the results of a computer
simulation.

Applied Mathematics: Berger et al.



7734 Applied Mathematics: Berger et al.

FIG. 4. Same overall structure as in Fig. 2 Right but redrawn to
emphasize local rules.

random and breadth first orders, in each case resulting in the
formation of a closed shell.
Computer simulations show that the local rules are rela-

tively robust. Even initial rules offset from the rules in Fig.
3 by a randomly selected amount of up to 9.60 (about 8%) for
each rule angle and 8% for each interaction length led to the
formation of a nearly identical closed shell in three-
dimensional space (Fig. 5). If the angles were changed by up
to 10%o, the shell failed to close in approximately half the
trials; but it still looked very similar when it closed. Through
more substantial (nonrandom) changes in the local rules, a
virus' shell can vary between spherical and polyhedral
shapes.
Local rule theories can be constructed for all T numbers.

There is always a set of local rules with the number of
conformations equal to the T number. Sets of local rules that
use fewer conformations also exist; these sets assign the same
conformation to nonequivalent positions. An alternate set of
local rules for T = 7, using only four conformations, is given
in Fig. 6. In this set of T = 7 rules, the hexamers are
symmetric under rotations of 1800. Micrographs of P22 pre-
cursor capsids similarly show the near-symmetry of the
hexamers under 1800 rotations (12). Always allowing the
disallowed hexagon in Fig. 6 would give a set of rules for a
T = 4 shell. In fact, the coat proteins of three T = 7
bacteriophages can also form T = 4 shells (16-19).
Another well-studied class of icosahedral viruses are the

T = 3 plant viruses (10, 20, 21). Several theories for their
assembly have been advanced (22, 23). Although these
T = 3 virus shells have three nonequivalent positions, the
proteins in two of these positions assume quite similar
conformations (21, 23). These are labeled "1" in the graph
representation in Fig. 7, while proteins in the third position
are labeled "2." A set of rules can be extracted from this
representation that permits both T = 3 and T = 1 shells. In
fact, the coat proteins of many of these viruses can form T =
1 shells (22). However, as similarly noted (23), if assembly is
initiated by a structure containing a type 2 conformation,
these will propagate during assembly to uniquely determine
the T = 3 structure.

Local Rules for a Non-Quasi-Equivalent Virus. The failure
of the tumor-linked Polyomavirus species to fit into the
quasi-equivalent framework has been a much debated point
in structural virology. These viruses have 360-subunit shells
consisting entirely of pentamers, some of which contact five

FIG. 5. (Upper) Silicon Graphics INDIGO 2 image of the shell
resulting from the rules in Fig. 3. (Lower) The same figure as in Upper
except that the structure was formed from randomly perturbed rules,
offset up to 8% from the rules that formed the structure in Upper.
Note that the two structures look nearly identical.

other pentamers and some of which contact six other pen-
tamers (Fig. 8). One can thus view this as a T = 6 structure,
a T number disallowed by the theory of quasi-equivalence.
Research (11, 24, 25) on this structure has focused on how
pentamers could be hexavalent and on how the same protein
can occupy very asymmetric environments. Liddington et al.
(11) postulated that assembly occurs by forming pentamers
that are subsequently tied together. In what follows, we apply
the local rule theory to a polyoma virus, simian virus 40
(SV40), to produce a new hypothesis for its assembly. As
remarked, local rule theories could apply both in the case
where monomers assemble directly to form the shell and
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FIG. 6. A second set of local rules for assembly of a left-handed
T = 7 virus. These rules produce the structure in Fig. 4 with
conformations 5, 6, and 7 replaced by 2, 3, and 4, respectively. Solid
arrows are binding interactions within capsomeres; dotted lines,
between capsomeres. We assume that the shell is initiated at a
pentamer and that a protein does not assume its final configuration
until there is an adjacent protein in its capsomere. A possible
mechanism for the disallowed-hexagon rule is that the three type 4
conformations, which could be spatially adjacent, form a trimer of
higher energy than a trimer of two type 4 and one type 2 conforma-
tions; alternatively, the rule could be enforced through interactions
with the scaffolding proteins.

where they first assemble into substructures, which then
come together to form the shell.
Local rules for SV40 can be constructed that are not

substantially different than for other icosahedral viruses. It
could simply have six local rules (Fig. 9), one for each of its
conformations. These rules guarantee the final form: com-
puter simulations show that applying the rules in Fig. 9 in any
order to an initial subunit will result in the same pattern of
interconnectivity as in Fig. 8.
For SV40, six protein conformations have been observed,

but the binding interactions are more complicated than as
indicated by the local rule theory (11). The function of the
C-terminjl arms of the SV40 coat protein has been described
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FIG. 7. A graph-based representation for T = 3 plant viruses.
Not all binding interactions are shown, but the interactions shown
are sufficient to abstract a set of local rules.

FIG. 8. A simplified diagram of how the coat proteins in the
polyoma virus SV40 shell connect with each other.

as "tying together" the pentameric building blocks (11);
these arms may also play the dual role of enforcing the
binding interactions of the local rules.

Closure and Malformadon. Although the above discussion
might suggest that closure is easily assured, simulations show
that a spiraling malformation can occur if local rules are
"broken" just once. Such incorrectly polymerized spiral
structures have been observed for P22 and other viruses (16,
26, 27).
This work provides a possible explanation for spiral

structures. Suppose that somehow a P22 shell starts with six
type 1 subunits, instead of five, fitting together to form a
capsomere. If the local rules were correctly followed there-
after, this hexamer would next be surrounded with six
hexamers instead of five. This region of the shell consisting
solely of hexamers will be relatively planar, but the regions
growing around it will have the normal radius of curvature.
When the sides have curved 1800, they will not be near
enough to close (Fig. 10). One side may curl inward, and the
second may form an outer layer around it. Computer
experiments show that if local rules are broken in this way,
spiraling can indeed occur.
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FIG. 9. Local rules for the SV40 virus. Each protein subunit is
labeled with the type of its conformation. The double, directed edges
could be simplified to a single edge; they are drawn as double edges
to correspond with the known biological structure (11). Each inter-
pentameric-binding interaction is a C-terminal arm of the protein
subunit, labeled with a direction to indicate which subunit it is from.
Each intra-pentameric-binding interaction is an N-terminal arm.
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FIG. 10. A cross-sectional two-dimensional analog of spiraling.
(Left) A spherical shape is constructed from segments with regular
curvature. (Right) A region without curvature is created at the
bottom of the sphere, but subsequent growth retains the regular
curvature. The resulting structure does not close.

DISCUSSION
The local rule formulation implies conformational flexibility
for the precursor subunits that are going to assemble into a
shell. Since multiple conformations of the same subunit have
now been observed for many mature virions, subunit flexi-
bility is not unpalatable. Until recently, it has not been
possible to directly measure the stability of precursor sub-
units. However, this has recently been determined for the
P22 coat subunit. The assembled capsid lattice is very stable
with a melting temperature (T.) of 87TC (28). However, the
subunit prior to polymerization is only marginally stable, with
a broad melting transition with a midpoint at 400C (M.
Galisteo, C. Gordon, and J.K., unpublished results). This low
thermal stability is consistent with conformational flexibility;
alternatively, the actual precursor states ofcoat subunits may
resemble a folding intermediate, not yet locked into a mature
conformation.

Local rules may help in the determination of virus struc-
tures. A virus might be hypothesized to obey a given com-
binatorial set of local rules for assembly. This could imply
that certain non-quasi-equivalent proteins are in similar con-
formations, knowledge that could aid in the determination of
structure. Local rules may also help in identifying likely
positions for scaffolding proteins. For instance, if the local
rules in Fig. 6 control assembly in P22, it seems likely that the
positions of scaffolding proteins are nearly symmetric under
1800 rotation ofthe hexamers. A hypothesis that achieves this
and is consistent with current estimates for the number of
scaffolding proteins (29, 30) is that four scaffolding proteins
are associated with each hexamer and five with each penta-
mer.

Previous attempts at interfering with the infection process
have mainly focused on interrupting infection by a fully
formed shell at the binding site. The local rules tell us that if
we can interfere with a single binding interaction, the shells
may not close. Recent experiments indicate that the subunit
assembly process may be a sensitive locus for inhibitors of
virus assembly (31).
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